

HMA Mix Design

Objective of a mix design

Objective of a mix design

- The objective of a mix design is to determine the combination of asphalt cement and aggregate that will give long-lasting performance as part of the pavement structure.
- Mix design involves laboratory procedures developed to establish the necessary proportions of materials for use in the asphalt mixture.
- These procedures include
 - Determining an appropriate blend of aggregate sources to produce proper gradation of mineral aggregate
 - Selecting the type and amount of asphalt cement to be used as the binder for that gradation.

Marshall Mix Design

Steps

Step A : Aggregate Evaluation There are several guidelines to keep in mind : Binder demand increases as the NMAS of the mix decreases Absorptive aggregates have a greater binder demand For a given NMAS, > a fine aggregate gradation will require more binder than a coarse aggregate gradation; If higher VMA is anticipated due to hard, angular aggregates, more binder will be required; Mixes with a higher P₂₀₀ tend to require more binder than those with a lower P 200

Ministry of F	Public Works	s and Housi	ng	
TECHNICAL SPECIFIC.	ATION FOR SECONDARY	& VILLAGE ROADS :		رزارة الانتخار العام والإسفان - - هوراساعت القرة لإشداء الطرق - القروية والتقوية
ITEM OF SPECS.	HOT MIX. LA	YER : BINDER :		1112,00
AGG. SPECS. 	35 MAX. 0.22 MAX. 50 MIN.(HOT BINS): N.P (HOT BINS) 20 MAX. 20 MAX. 1.0 MAX.	35 MAX. 0.22 MAX. 50 MIN.(HOT BINS) N.P (HOT BINS) 25 MAX. 25 MAX. 1.0 MAX.	مه والاختبارات (Physical Properties) جميع بالخليط يجب أن تطابق المتطلبات الطبيعية المذكررة في ي -	د- الخصائص الطبيعية للحص أتواع الحصمة المستعلة الجدول رقم (1) المرقة مراجع المحمد ا محمد المحمد المحمم المحمم المحمم المحممم الم

Ministry of Pub	lic Works a	a <mark>nd Hous</mark> ir	Ig	
Spe item of specs.	HOT MIX	LAYER : BINDER	ction	رزارة الانتقال العنة رالاسكان
- CHERT - GYPSUM CONTENT - SOUNDNESS (Na) (Mg) - FRACTURED FACES	5 % MAX. 1 % MAX. 9 % MAX. 12 % MAX. 90 % MIN.	: 5 % MAX. : 1 % MAX. : 9 % MAX. : 12 % MAX. : 90 % MIN.		اللورية والتقرية - اللورية (1994) العر 1994
:(PERCENT OF TOTAL W : RTD. ON #4 CONSIST: : OF TWO OR MORE : FRACTURED FACES) : :- GRADATION	r. : 5 : : :			
: 1" : 3/4" : 1/2" : 3/8" : # 4	: 100 :90-100 :71-90 :56-80 :35-56	: : 100 : 70-100 : 53-90 : 40-80 : 30-56 : 23-49		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$: 23-49 : 14-43 : 5-19 : 4-15 : 2-8	: 14-43 : 5-19 : 4-15 : 2-8		

Step A : Aggregate Evaluation

A-4 :Prepare specimen weigh-out table

retained between sieves times the required total aggregate weight required to prepare the specimen (usually 1150 g), then determine cumulative weights.

	Required Aggregate wt.	(g)	11	5 <mark>0</mark>
Sieve size	% Passing	Cum. Retained (%)Cum. Retained (g)	Retained
25.4 mm (1 in)	100.00	0	0.0	0
19.0 mm (3/4 in)	100.00	0	0.0	0
12.5 (1/2 in)	93.00	7	80.5	80.5
9.51 mm (3/8 in)	81.00	19	218.5	138
No. 4	50.00	50	575.0	356.5
No. 8	35.00	65	747.5	172.5
No. 16	25.00	75	862.5	115
No. 30	19.00	81	931.5	69
No. 50	13.00	87	1000.5	69
No. 100	9.00	91	1046.5	46
No. 200	6.60	93.4	1074.1	27.6
Pan	0	100	1150.0	75.9

Marshall Mix Design

Step B : Asphalt Cement Evaluation

Step B : Asphalt Cement Evaluation

□ <u>B-2 : Verify that spec. properties are acceptable</u>

	Penetration Grade											
	40–50 60–70				85-1	00	120-150		200–3	300		
	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max		
Penetration at 25°C [77°F], 100 g, 5 s	40	50	60	70	85	100	120	150	200	300		
Softening Point, °C [°F]	49 [120]		46 [115]		42 [108]		38 [100]		32 [90]			
Flash point, °C [°F], (Cleveland open cup)	230 [450]		230 [450]		230 [450]		220 [425]		175 [350]			
Ductility at 25°C [77°F], 5 cm/min, cm	100		100		100		100		100 ^A			
Solubility in trichloroethylene, %	99.0		99.0		99.0		99.0		99.0			
Retained penetration after thin-film oven test, %	55 +		52 +		47 +		42 +		37 +			
Ductility at 25°C [77°F], 5 cm/min, cm after thin-film oven test test			50		75		100		100 ^A			

Step B : Asphalt Cement Evaluation

□ <u>B-3 : Determine the specific gravity of asphalt binder.</u>

The pycnometer method is used to determine the specific gravity of asphalt cements.

Step B : Asphalt Cement Evaluation Selection of mixing and compaction temperatures Laboratory mixing and compaction temperatures are intended for determining design volumetric properties of the asphalt mixture and are <u>NOT</u> intended to represent field mixing and compaction temperatures at the project level In an asphalt mix facility: The mixing temperature The temperature at which the aggregate can be sufficiently dried and uniformly coated It should not exceed 177 °C The compaction temperature based <u>solely</u> on the ability of the compaction equipment to achieve adequate in-place density for an asphalt mix is usually in the range of 135–155 °C

A planetary with wire whips

Step C : Preparation of Marshall Specimen

C-5: Mix the aggregate with the specified binder content

Step C : Preparation of Marshall Specimen <u>C-8-A : Packing the mold</u>

- Place a filter or nonabsorbent paper disk cut to size in the bottom of the mold.
- Place the entire batch in the mold with collar, and then spade the mixture vigorously with a heated spatula or trowel 15 times around the perimeter and 10 times over the interior. Smooth the surface to a slightly rounded shape.
- □ The temperature of the mixture immediately prior to compaction shall be within the limits of the compaction temperature established in paragraph otherwise, it shall be discarded. In no case shall the mixture be reheated

Step C : Preparation of Marshall Specimen

C-8: Compact the specimen at the required Blow/side according to Marshall specifications.

□ The number of blow/<u>side</u> is function with design traffic level

Marshall Method Criteria ¹	Light ⁻ Surface	Traffic ³ e & Base	Mediun Surface	n Traffic ³ e & Base	Heavy Traffic ³ Surface & Base		
	Min	Max	Min	Max	Min	Max	
Compaction, number of blows each end of specimen	35		5	50	75		

Traffic classifications

- >Light Traffic conditions resulting in a 20-year Design ESAL < 10^4
- ≻Medium Traffic conditions resulting in a 20-year Design ESAL between 10⁴ and 10⁶
- > Heavy Traffic conditions resulting in a 20-year Design ESAL > 10^6

Marshall Mix Design

Step D : Density and voids analysis

 Step C : Preparation of Marshall Specimen

 C-4: Prepare three specimens at five different binder contents

 Estimated 0.B.C - 1.0%

 Estimated 0.B.C - 0.5%

 Estimated 0.B.C + 0.5%

 Estimated 0.B.C + 0.5%

 Estimated 0.B.C + 1.0%

Compactic Specific Gr Bulk S.G. /	ction: 75 Blows Grade AC: AC-20 Project: Th : Gravity of AC: 1.030 Absorbed AC of Aggregate: 0.6% Location: M G. Aggregate: 2.674 Effective S.G. Aggregate: 2.717 Date:						Tirial Misc								
		м	lass, grai	115								Scability	Stability, Ibs. (N)		
% AC by wt. of mix, Spec. No.	Spec. Height in (mm)	In Air	lo Water	Sat. Surface Dry In Air	Bulk Volume, oc	Bulk S.G. Specimen	Max. S.G. (Loose Mix)	Unit Weight, pcf (Mg/m ⁸)	% Air Voids	%VMA	%VFA	Measured	Adjusted	Flow 0.01 in. (0.25 mm)	
3.5 - A		1240.6	726.4	1246.3	519.9	2.386		148.9				2440	2440	8	
3.5 - B		1238.7	723.3	1242.6	519.3	2.385		148.6			2	2420	2420	7	
3.5-C		1240,1	724.1	1245.9	521.8	2.377		1.48.3				2510	2510	6	
Average						2.383	2.570	148.7	7.3	14.0	48.0		2457	7	
4.0 - A		1244.3	727.2	1246.6	519.4	2.396		149.5				2180	2180	7	
4.0 - B		1244.6	727.0	1247.6	520.6	2.391		149.2				2260	2260	8	
4.0-C		1242.6	727.9	1244.0	516.1	2.408		150.2			1075.05.2	2310	2310	8	
Average			199719835	2212032362	100000000	2.398	2.550	149.6	6.0	13.9	57.1	2010/201	2250	7.7	
4.5 - A		1249.3	735.8	1250.2	514.4	2.429		151.2				2420	2420	9	
4.5 - B		1250.8	728.1	1251/6	523.5	2.389		149.1				2310	Z314	9	
4.5-C		1251.6	735.3	1253.1	517.8	2.417		150.8				2340	2340	9	
Average						2.412	2.531	150.5	4.7	13.9	66.1		2358	9	
5.0 - A		1256.7	739.8	1257.6	\$17.8	2.427		151.4				2290	2290	10	
5.0 - 8		1258.7	742.7	1259.3	516.6	2.437		152.0				2190	2190	10	
5 0 - C		1258.4	737.5	125.9.1	521.6	2.418		1.50.5				2240	2240	0	
Average						2,425	2.511	151.3	3.4	13.8	75.2		2240	0.7	
5.5 - A		1263.8	742.6	1264.3	\$21.7	2.422		151.2				2210	2210	11	
5.5 - B	3	1258.8	741.4	1259,4	\$18.0	2,430		151.6			2	2300	2300	10	
5.5-C			742.5	1259.5	\$17.0	2.435		152.0			<u> </u>	2210	2240	10	
AMerage						2.429	2.493	151.6	2.5	14.1	82.1		2240	10.3	

Marshall Mix Design

Step E : Marshall stability and flow test

Marshall Mix Design Method Procedures Step F : Tabulating and plotting test results

□ F-1: Tabulate the results from testing

➤Volumetric analysis

➤ Correct stability values for specimen height

≻Flow

	1											1 Contraction of the	1	
		Mass, grams										Stability, lbs. (N)		
% AC by wu of mis, Spec. No.	Spec. Height in. (mm)	In Air	lo Water	Sat. Surface Dry In Air	Bulk Volume, sc	Bulk S.G. Specimen	Max. S.G. (Loose Mix)	Unit Weight, pef (Mg/m³)	% Al- Volds	RVMA	%VFA	Measured	Adjusted	How 0.01 in. (0.25 mm)
35-A		1240.6	726.4	1246.3	519.9	2.386		148.9			2	2440	2440	
3.5 - B		1238.7	723.3	1242.6	519.3	2.385		148.8				242.0	2420	7
3.5-C		1240.1	724.1	1245.9	521.8	2.377		148.3				2.51.0	2.51.0	6
Average						2.383	2.570	148.7	73	14.0	48.0		2457	7
4.0 - A		1244.3	727.2	1246.6	519.4	2.396		149.5				2180	2180	7
4.0 = B		1244.6	727.0	1247.6	520.6	2.391		149.2		1		2260	2260	.8
4.0 - C		1242.6	727.9	1244.0	\$16.1	2.408	and the later	150,2		i and the second		2310	2310	8
Average			101100			2.398	2.550	149.6	6.0	13.9	\$7.1		2250	7.7
4.5 - A		1249.3	735.8	1250.2	514.4	2.429		151.2		1	£	2420	2420	9
4.5 - 8		1250.8	728.1	1251.6	523.5	2 389		149.1			5	2310	2314	9
4.5×C		1251.6	735.3	1253.1	517.8	2 417		150.8			9	2340	2340	
Amerage						2.412	2.531	1.50.5	4.7	13.9	66.1		2358	9
5.0 - A		1256.7	739.8	1257.6	.517.8	2.427		151.4				2290	2290	10
50 - B		1258.7	742.7	1259.3	516.6	2 437		1.52.0			3	2190	2190	10
5.0 - C		1258.4	737.5	1259.1	\$21.6	2.418	11.50.5711.170	150.5			li constructor	2240	2240	9
Average						2,425	2.511	151.3	3,4	13.9	75.2		2240	9.7
5.5 - A		1263.8	742.6	1264.3	521.7	2.422		151.2				2210	2210	11
5.5 - B		1258.8	741.4	1259.4	518.0	2.430		151.6			2	2300	2300	10
5.5-C			742.5	1259.5	\$17.0	2.435		152.0			8	2210	2240	10
Average						2,429	2,493	151.6	2.5	14.1	82.1		2240	10.3

Compaction: 75 Blows Specific Gravity of AC: 1.0 Bulk S.G. Aggregate: 2.67	Grade AC: AC-20 Absorbed AC of Aggregate: 0.6% Effective S.G. Aggregate: 2.717	Project: Location: Date:	Trial Mix:
% AC Spec. Max by wr. Height S. of mix, (mm) Mi 3.5 - A Mi 3.5 - B 3.5 - C Average 2.5 4.0 - A 4.0 - B 4.0 - B 4.5 - B 4.5 - A 4.5 - B 5.0 - A 5.0 - B 5.0 - B 5.0 - C Average 2.5 S.5 - A S.5 - B S.5 - C	Estimate Gmm at other binder contents $G_{mm} = \frac{100}{\frac{P_s}{G_{se}} + \frac{P_b}{G_b}}$ $G_{mm@ 3.5} = \frac{100}{\frac{96.5}{2.717} + \frac{3.5}{1.030}} = 2.570$ $G_{mm@ 4.0} = \frac{100}{\frac{95.5}{2.717} + \frac{4}{1.030}} = 2.550$ $G_{mm@ 5} = \frac{100}{\frac{95.5}{2.717} + \frac{5.5}{1.030}} = 2.511$ $G_{mm@ 5.5} = \frac{100}{\frac{95}{2.717} + \frac{5.5}{1.030}} = 2.493$	where: $G_{mm} =$ P P_1 $P_s + P$ G_s G_s M_{ml} V_{mm}	 maximum specific gravity of asphalt mixture = percentage of aggregate by total mix weight = percentage of binder by total mix weight = 100 = effective specific gravity of aggregate = specific gravity of binder = bulk mass of paving mixture (which would be the same as M_{mm}, since the air has no mass), typically in g = volume of aggregate and binder, typically in cm³ = density of water, 1.000 g/cm³
			87

Compaction: 7.5 Blows ipecific Gravity of AC: 1.030 3ulk S.G. Aggregate: 2,674					Grande AC: AC-20 Project: Absorbed AC: of Aggregate: 0.6% Location : Effective S.G. Aggregate: 2.717 Date:								Trial Mix:	
		м	ass, grad	115	1					Stability, Ibs. (N)				
% AC by wt. of mix, Spec. No.	Spec. Height in (mm)	In Air	ln Water	Sat. Surface Dry In Air	Bulk Volume, cc	Bulk S.G. Specimen	Max. S.G. (Loose Mix)	Unk Weight, pcf (Mg/m ³)	% Air Voids	SVMA	SVFA	Measured	Adjusted	Flow 0.01 in. (0.25 mm)
3.5 - A		1240.6	726.4	1246.3	519.9	2.386		148.9				2440	2440	в
3.5 - B		1238.7	723.3	1242.6	\$ 19.3	2.385		148.8				2420	2420	7
3.5-C		1240.1	724,1	1245.9	5.21.8	2.377		148.3				2510	2510	6
Average						2,383	2.570	148,7	7.3	14.0	48.0		2457	7

Perform Marshall Stability test

Compactic Specific Gr Bulk S.G. A	n: 75 Blo avity of A vggregate:	₩¥ C:1.03.0 : 2.674	s Gradu AC: AC-20 Project: Tri 1.030 Absorbed AC of Aggregate: 0.6% Location: M 1.674 Effective S.G. Aggregate: 2.717 Date:						crace Act Act O Project :1.030 Absorbed AC of Aggregate: 0.6% Location: 2.674 Effective S.G. Aggregate: 2.717 Date:								Crade AC: AC-20 Project Tr Absorbed AC of Aggregate: 0,6% Location: M Effective S.G. Aggregate: 2,717 Date:						
		M	ass, gran	ns	1						Stability, lbs. (N)			1									
95 AC by wt. of mix, Spec. No.	Speec Height In. (mm)	Iri Air	ln Water	Sat. Surface Dry In Air	Bulk Volume. ce	Bulk S.G. Specimen	Max. 5.G. (Loose Mix)	Umit Weight, pcf (Mg/m ²)	% Air Voids	36V74A	%VFA	Measurod	Adjusted	Flow 0.01 in. (0.25 mm									
15-A		1240.6	726.4	1246.3	519.9	2 3966		1.49.9		-		2440	2440	n									
3.5 - B		1238.7	723.3	1242.6	519.3	2.385		148.8				2420	242.0	7									
3.5 - C		1240.1	724.1	1245.9	521.8	2.377		148.3			(11. M. 11	2510	2510	6									
Awerage	-		-			2.383	2.570	148.7	7.3	14.0	48.0		2457	7									
4.0 - A		1244.3	727.2	1246.5	519.4	2.396		149.5				2180	218-0	7									
-4.0 - B		1244.6	727.0	1247.6	520.6	2.391		149.2				2260	226-0	8									
4.0 - C		1242.6	727.9	1244.0	516.1	2.408		150.2				2310	2310	B									
Average						2.398	2.550	149.6	6.0	13.9	57.1		2250	7.7									
4.5 - A		1249.3	735.8	1250.2	514.4	2,429		1.51.2				2420	2420	9									
4.5 – B		1250.8	728.1	1251.6	523.5	2.389		149.1				2310	2314	9									
4.5 - C		1251.6	735.3	1253.1	517.8	2.417		150.8				2340	2340										
Average				-		2.412	2.531	150.5	4.7	13.9	66.1		2358	9									
5.0 - A		1256.7	739.8	1257.6	517.8	2,427		151.4				2290	2290	10									
5.0 - B		1258.7	742.7	1259.3	\$16.6	2,437		152.0		1		2190	2190	10									
5.0-C		1258.4	747.5	1259.1	\$21.6	2,418		180.8				2240	2240	U U									
Average						2,425	2.511	151,3	3,4	13,8	75,2		2240	9.7									
5.5 - A		1263.8	742.6	1264.3	521.7	2.422		151.2				2210	2210	11									
5.5 - B		1258.8	741.4	1259.4	518.0	2.430		151.6				2300	2300	10									
5.5-C		in the second	742.5	1259.5	\$17.0	2.435		152.0				2210	2240	10									
Average						2.429	2.493	151.6	2.5	14.1	82.1		2240	10.3									

Marshall Mix Design Method Procedures Step G : Determination of optimum asphalt content

Two methods are used to determine optimum asphalt content :

Method 1: National Asphalt Pavement Association (NAPA) Procedure
 Method 2: Asphalt Institute Procedure

105

Marshall Mix Design

Step G : Determination of optimum asphalt content

Step G-1: NAPA method procedures

arshall Mix D	esign Method	Proc	edur	es			
Step G-1 : NAPA	method procedu	ires					
G-1-6: Compare the o	btained stability, flow,	%VMA	, VFA w	<mark>ith again</mark>	st the s	pecificat	ion
values							
 If it pass the requirement t If any of these properties is 	hen preceding O.B.C is satisfo outside the specifications r	action ange, the	<u>e mixture</u>	should be	redesign	ned	
Traffic classifications	Marshall Method Criteria	Light T Surface	raffic ^a & Base	Medium Surface	Traffic ³ & Base	Heavy Traffic ³ Surface & Base	
Traffic classifications		Min	Max	Min	Max	Min	Max
> Light Traffic conditions				1			
Light Traffic conditions resulting in a 20-year	Compaction, number of blows each end of specimen	3	5	5	0	7:	5
Light Traffic conditions resulting in a 20-year Design ESAL < 10 ⁴	Compaction, number of blows each end of specimen Stability ² , N (lb.)	3 3336 (750)	-	5338 (1200)	-	7: 8006 (1800)	-
 Light Traffic conditions resulting in a 20-year Design ESAL < 10⁴ Medium Traffic conditions resulting in a 20-year 	Compaction, number of blows each end of specimen Stability ² , N (Ib.) Flow ^{24,5} , 0.25 mm (0.01 in.)	3336 (750) 8	- 18	5338 (1200) 8	- 16	7: 8006 (1800) 8	- 14
 Light Traffic conditions resulting in a 20-year Design ESAL < 10⁴ Medium Traffic conditions resulting in a 20-year Design ESAL between 10⁴ 	Compaction, number of blows each end of specimen Stability ² , N (lb.) Flow ^{24,5} , 0.25 mm (0.01 in.) Percent Air Voids ²	3336 (750) 8 3	5 - 18 5	5338 (1200) 8 3	0 - 16 5	7: 8006 (1800) 8 3	5 - 14 5
 Light Traffic conditions resulting in a 20-year Design ESAL < 10⁴ Medium Traffic conditions resulting in a 20-year Design ESAL between 10⁴ and 10⁶ Heavy Traffic conditions 	Compaction, number of blows each end of specimen Stability ² , N (lb.) Flow ²⁴⁵ , 0.25 mm (0.01 in.) Percent Air Voids ⁷ Percent Voids in Mineral Aggregate (VMA) ⁶	3336 (750) 8 3	5 - 18 5	5338 (1200) 8 3 See Tal	0 - 16 5 ble 7.3	7: 8006 (1800) 8 3	5 - 14 5

Marshall Mix Design Method Pro	Nominal Maximum	M	inimum V	MA, percer	nt		
Step 0-1. NAFA method procedures	Particle Size ^{1,2}	De	Design Air Voids, Percent ^a				
[mm	in.	3.0	4.0	5.0		
[1.18	No. 16	21.5	22,5	23.5		
	2.36	No. 8	19.0	20.0	21.0		
	4.75	No. 4	16.0	17.0	18.0		
	9.5	34	14.0	15.0	16.0		
	12.5	15	13.0	14.0	15.0		
	19.0	34	12.0	13.0	14.0		
	25.0	1.0	11.0	12.0	13.0		
	37.5	1.5	10.0	11.0	12.0		
	50	2.0	9.5	10.5	11,5		
	63	2.5	9.0	10.0	11.0		
-					114		

Jordanian Specifications for secondary and village roads construction

TABLE (6) :				@
TECHNICAL SPECIFICATION FOR SECONDARY & VILLAGE ROADS :				سترینیت وزیری دانلندی الطبیة برالاستان
ASPHALT PAVEMENT , (BINDER AND WEARING)			· المواصلات اللذية لإشدام الطرق
				القروبة والثقوبة "
: HOT MIX. LAYER :				
ITEM OF SPECS.	OF SPECS. :========:===========================			
:	: WEARING	: BINDER	:	
				للقر و٢٩٢
- TYPE OF MATERIAL	:LIME STONE/OR	:LIME STONE/OR	:	
1	GRANITE	: GRANITE	:	
- TYPE OF BITUMEN	:A.C 60/70	:A.C 60/70	:	
sS = S = S	: 80/100	: 80/100	:	
- STABILITY (KG)	: 750 MIN.	: 750 MIN.	:	
- FLOW (1/100)"	: 8 - 16	: 8 - 16	:	
- STIFFNESS	1 - 2 2 3 35	: -	:	
- L. OF STABILITY	: 25 MAX.	: 25 MAX.	:	
- V.M.A (%)	: 13 MIN.	: 12 MIN.	:	
- ASPHALT CONTENT	:AS DESIGNED	:AS DESIGNED	:	
(TOTAL MIX.)	1	:	:	
AIR VOID (%)	: 3-5	: 3-5	:	
- STRIPPING *	:	:	:	
-STATIC TEST	:95 MIN. COATING	:95 MIN. COATING	:	
-DYNAMIC TEST SCAN	D:60 MIN. COATING	:60 MIN. COATING	:	
- COMPACTION	: 98%	: 97%	:	
- THICKNESS (CM)	: 5 OR AS SPECIFIE	D:	:	
	:ON THE DRAWINGS	- 1 🕈 🕈	:	
				132

Marshall Mix Design

Guidelines for Adjustments

Guidelines for Adjustments

Satisfactory Voids & Low Stability

□ This condition suggest low quality aggregates

> The aggregate quality should be improved.

Marshall Design Method

Advantages

>Attention on voids (volumetric), strength, durability

➤Inexpensive equipment

➤ Easy to use in process control/acceptance

Disadvantages

➤Impact method of compaction

> Does not directly consider shear strength

>Load perpendicular to compaction axis

Developed for dense grad, < 1" max size</p>

➤ Viscosity or pen graded AC

165

