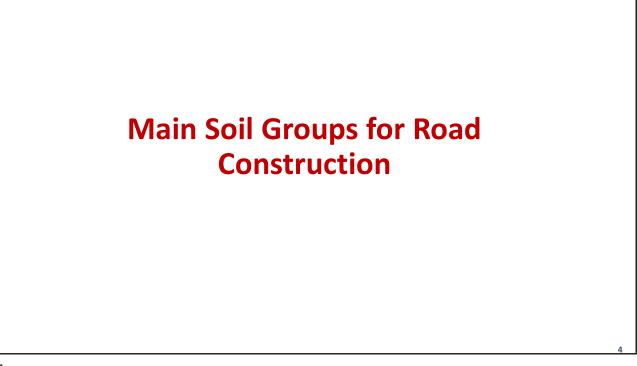


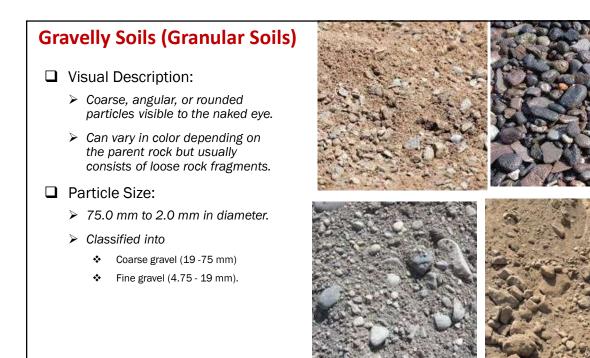
Soils

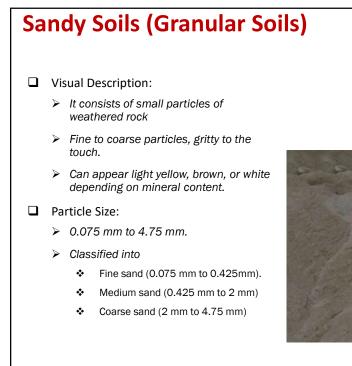

Introduction

Soil

Definition

Naturally occurring mineral particles which are fairly readily separated into relatively small pieces and in which the mass may contain air, water, or organic materials

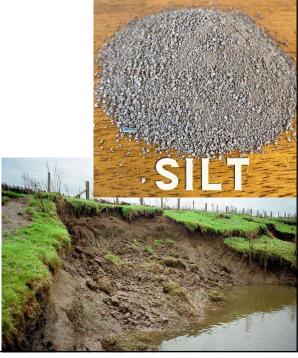



Main soil groups

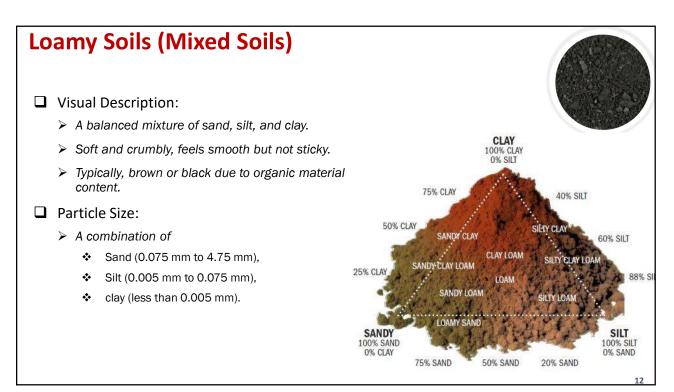
- 1. Gravelly Soils (Granular Soils)
- 2. Sandy Soils (Granular Soils)
- 3. Silty Soils (Fine-Grained Soils)
- 4. Clayey Soils (Fine-Grained Soils)
- 5. Loamy Soils (Mixed Soils)
- 6. Organic Soils (Peat, Muck)
- 7. Rock Fill

Main Soil Groups for Road Construction

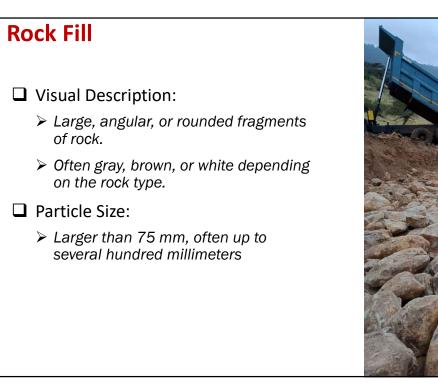
Visual Description



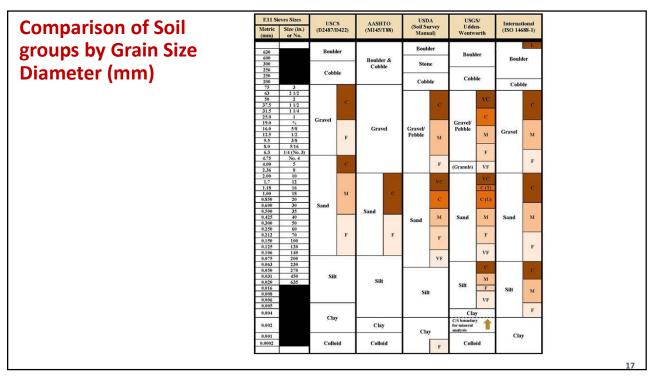
Silty Soils (Fine-Grained Soils)

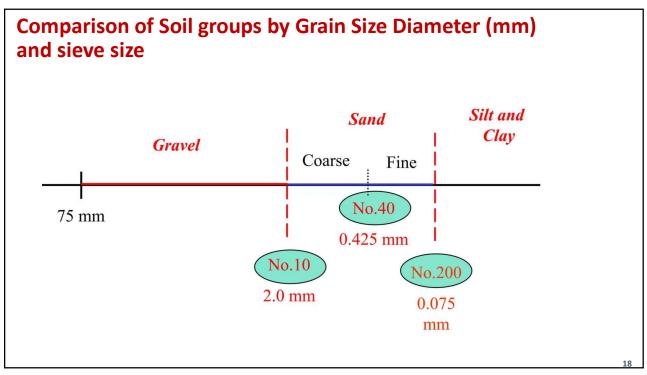

- □ Visual Description:
 - Fine particles, smooth when dry, and feels silky to the touch.
 - Dusty appearance when dry and sticky or slippery when wet.
 - Usually, light gray or brown.
 - is made up of rock and other mineral particles,
 - which are smaller than sand and larger than clay
 - It is mainly found near the river, lakes and other water bodies
- Particle Size:
 - > 0.005 mm to 0.075 mm.
 - Fine enough to be carried by wind or water.
 - known to have much smaller particles compared to sandy soil

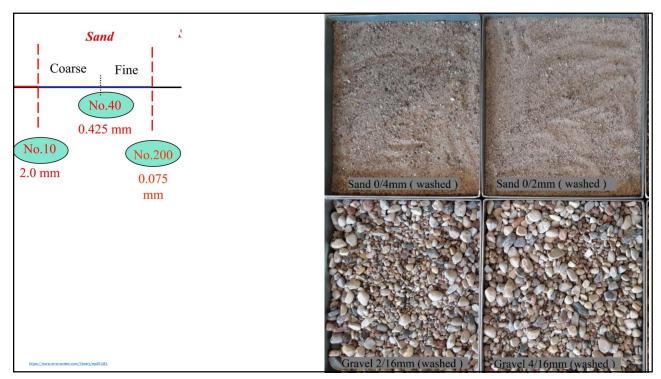


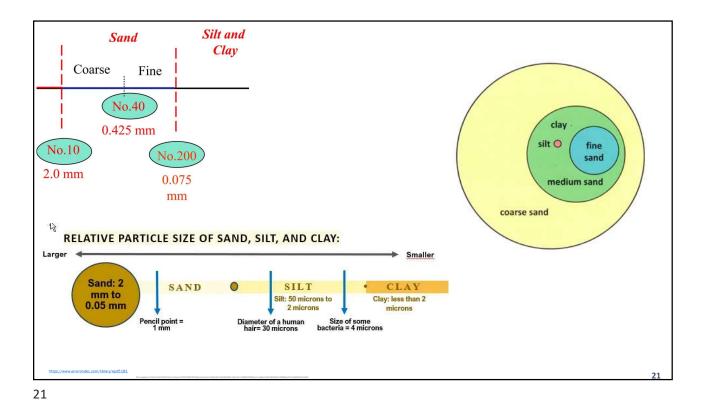


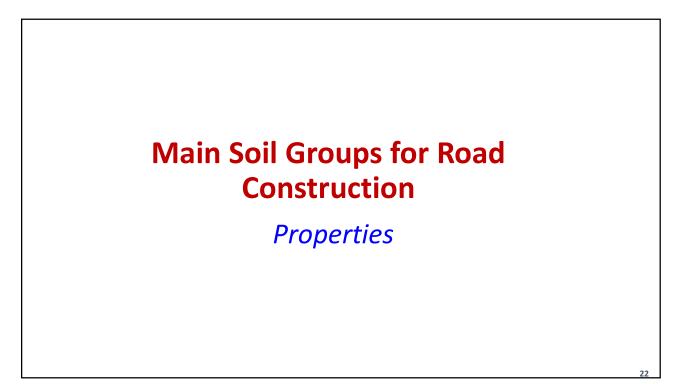


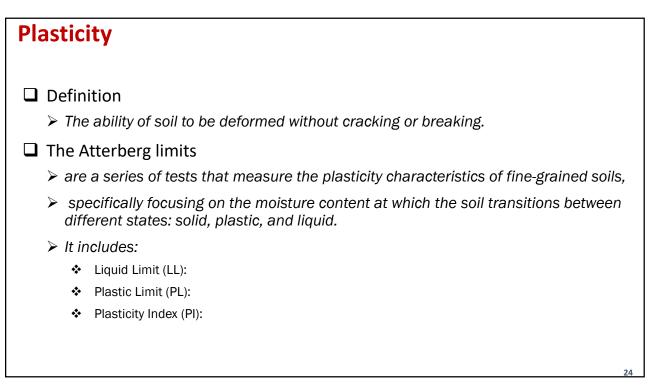




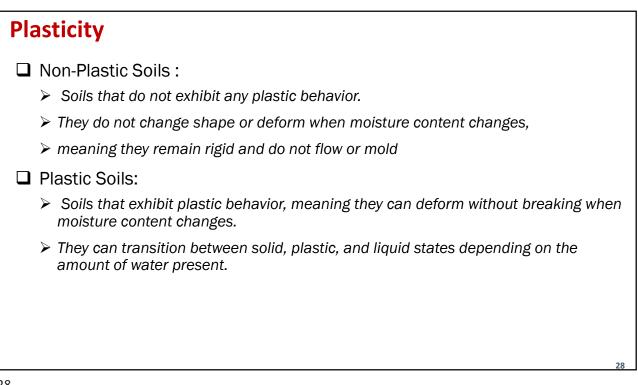








Load-Bearing Capacity


The ability of soil to support loads without excessive deformation or failure

Soil Group	Rank
Rock Fill	Very high
Gravelly Soils	High
Sandy Soils	Moderate
Silty Soils	Low when wet
Clayey Soils	Low
Loamy Soils	Moderate

Atterberg Limits Liquid Limit (LL): The moisture content at which the soil changes from a plastic state to a liquid state. This is the threshold beyond which the soil cannot maintain its shape. Can range be from zero to 1000; but most soils have LL's less than 100 Ahigh liquid limit normally indicates High compressibility High strinkage/swelling potential Plastic Limit (PL): The moisture content at which the soil changes from a plastic state to a semi-solid state. Below this moisture content, the soil becomes too stiff to be deformed easily. The plastic limit can range from zero to 100 or more, with most being less than 40 Plasticity Index (PI): The difference between the Liquid Limit and Plastic Limit (Pl = LL - PL). This index indicates the range of moisture content over which the soil exhibits plastic behavior.

Plastic Soils: Types: Low Plasticity: Soils that can be molded slightly but will return to their original shape when pressure is removed (e.g., some silty soils). These soils will have low values for both LL and PL, indicating limited plastic behavior. The Plasticity Index will be low, suggesting minimal deformation when moist. High Plasticity: Soils that can be easily molded and retain the new shape (e.g., clayey soils). Exhibit significant differences between LL and PL, leading to a high Plasticity Index

Plasticity					
The ability of	Soil Group	Atterberg Limits	Plasticity Index (PI)	Plasticity	Behavior with Moisture Changes
soil to be deformed	Rock Fill	Not applicable	Not applicable	Non-plastic	Rigid, stable under varying moisture conditions
without cracking or	Gravelly Soils	Not applicable	Not applicable	Non-plastic	Rigid, does not deform; good drainage properties
breaking.	Sandy Soils	Low LL and PL	Low PI (=0)	Low plasticity	Limited deformation, stable, but may erode
	Silty Soils	Liquid Limit: 20%- 35%,	Low PI (4%-10%)	Low to moderate plasticity	Some volume change with moisture; can become unstable when wet
	Clayey Soils	Liquid Limit: 30%- 70%, Plasticity Index: 10%-40%	High PI (10%-40%)	High plasticity	Significant volume changes; high shrink- swell potential
	Loamy Soils	Varies depending on clay content	Moderate PI (varies)	Moderate plasticity	Moderate volume changes; retains some moisture
					30

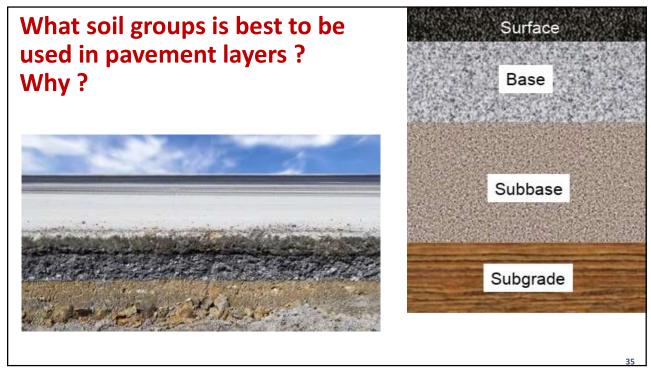
Ease of Volume Change

The extent to which a soil's volume changes with variations in moisture content

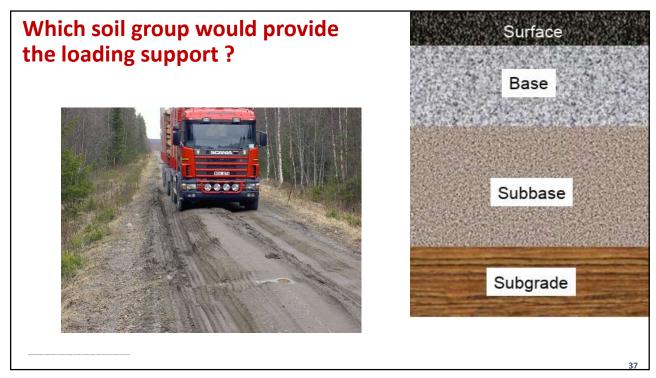
Soil Group	Rank
Rock Fill	Very low (negligible)
Gravelly Soils	Very low
Sandy Soils	Low
Silty Soils	Moderate to high
Clayey Soils	Very high (shrink-swell potential)
Loamy Soils	Moderate

31

Drainage


The ability of soil to remove or allow water to flow away, preventing water accumulation.

Soil Group	Rank
Rock Fill	Excellent
Gravelly Soils	Excellent
Sandy Soils	Good (coarse sand)
Silty Soils	Poor
Clayey Soils	Very poor
Loamy Soils	Moderate


Summary

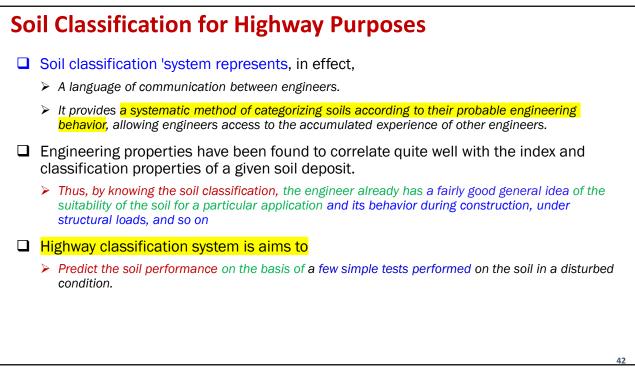
Soil Group	Load-Bearing Capacity	Plasticity	Ease of Volume Change	Drainage	Frost Susceptibility
Rock Fill	Very high	Non-plastic	Very low (negligible)	Excellent	None
Gravelly Soils	High	Non-plastic	Very low	Excellent	Minimal
Sandy Soils	Moderate	Low to non-plastic	Low	Good (coarse sand)	Low to moderate
Silty Soils	Low when wet	Low plasticity	Moderate to high	Poor	High
Clayey Soils	Low	High plasticity	Very high (shrink- swell potential)	Very poor	Very high
Loamy Soils	Moderate	Moderate plasticity	Moderate	Moderate	Moderate

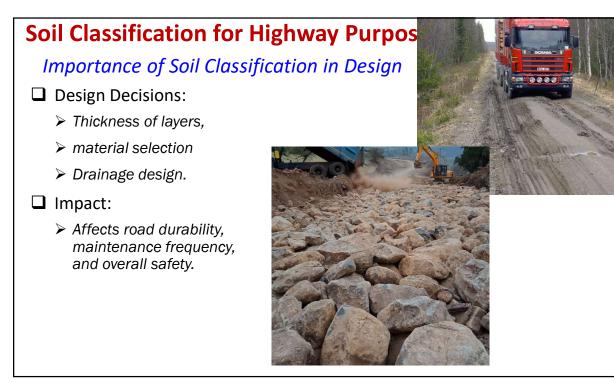
Frost Susceptibility

The likelihood of soil to expand when frozen, potentially causing frost heaving

Soil Group	Rank
Rock Fill	None
Gravelly Soils	Minimal
Sandy Soils	Low to moderate
Silty Soils	High
Clayey Soils	Very high
Loamy Soils	Moderate

39

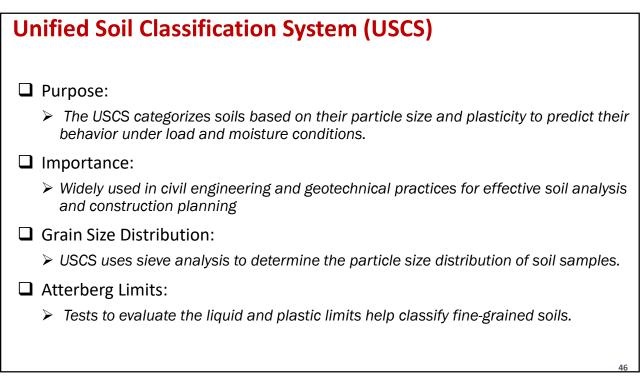

Which soil group would cause this failure ?

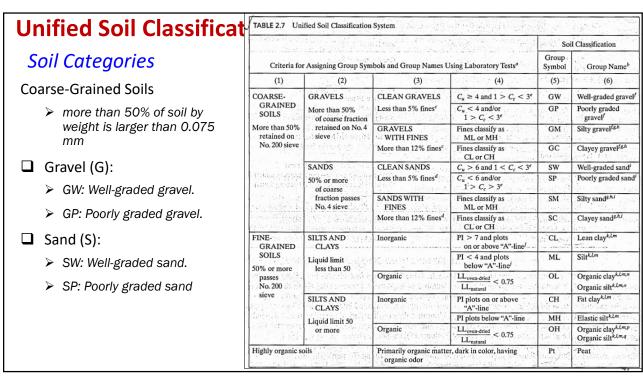


Road damage caused by landslides

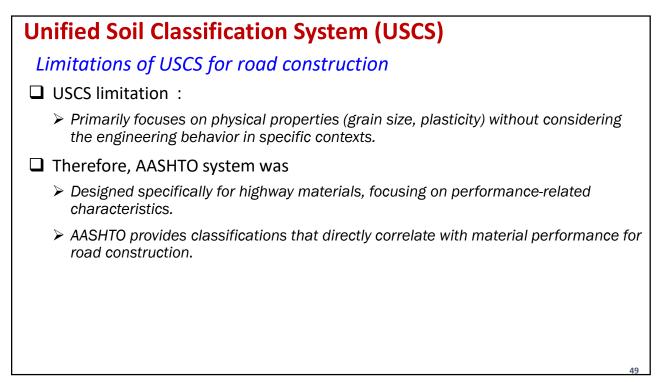
Main Soil Groups for Road Construction

Soil Classification

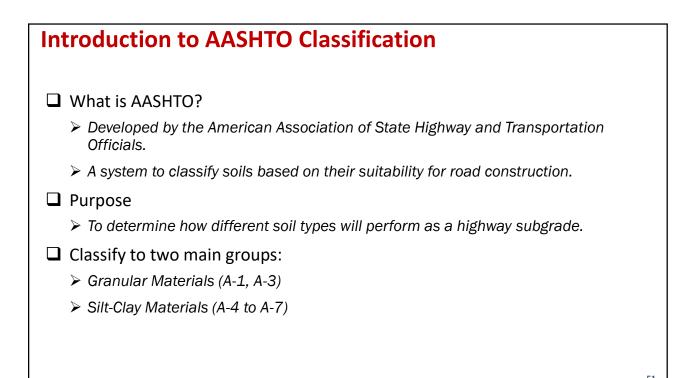

Soil Classification for Highway Purposes

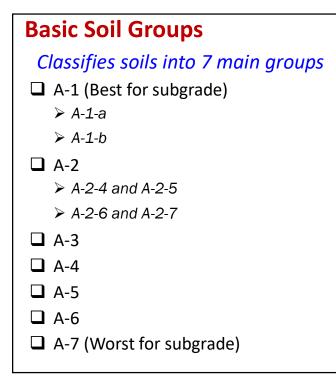

Available systems

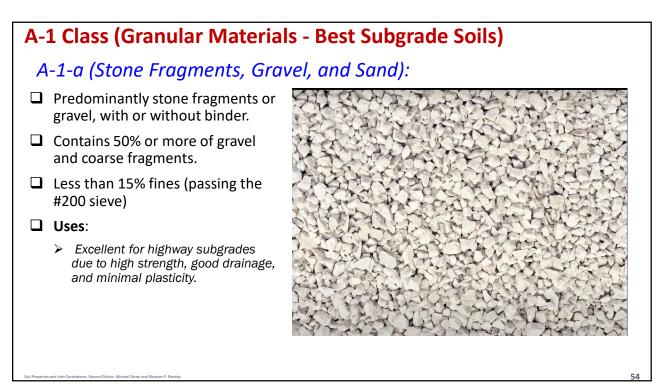
- 1. Unified Soil Classification System (USCS)
 - > Classify soil by type rather than by engineering suitability for specific uses
 - Primarily focuses on physical properties (grain size, plasticity) without considering the engineering behavior in specific contexts.
 - It Less emphasis on suitability for road applications, potentially overlooking factors critical for highway stability and performance
- 2. American Association of State Highways and Transportation officials (AASHTO)
 - > Divides the soil into seven major groups
 - > Essentially classifying soils according to their suitability as subgrades.
 - Some groups may be further divided into subgroups

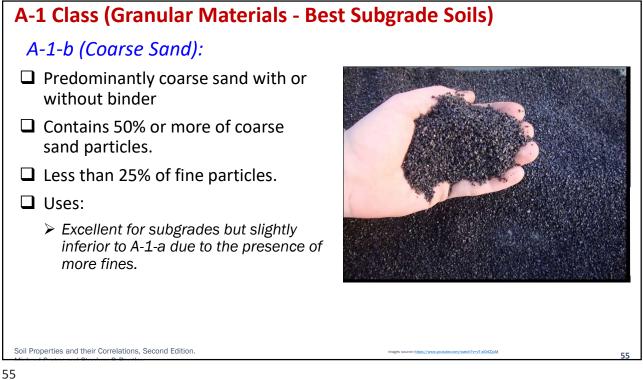

Soils

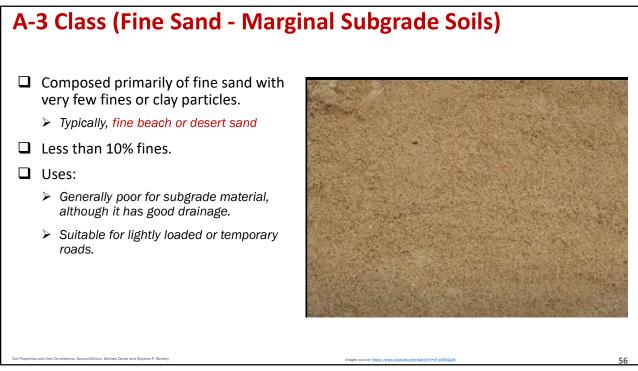

Unified Soil Classification System (USCS)

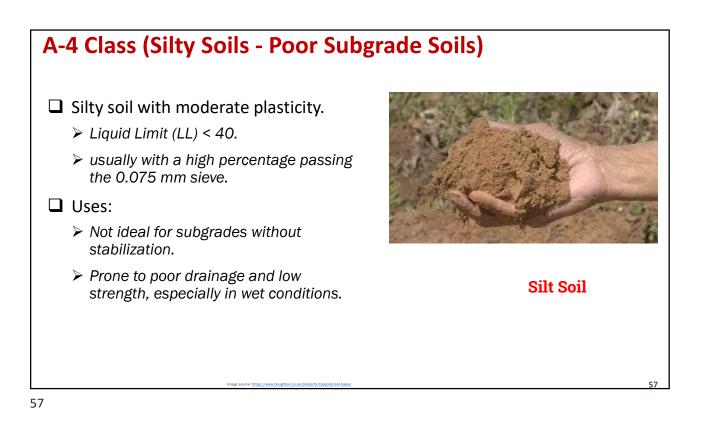


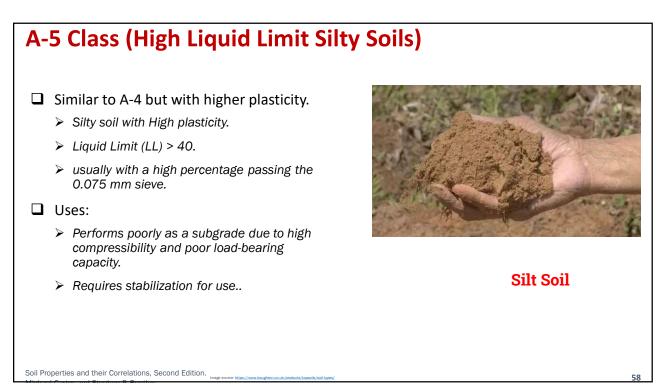

Unified Soil Classificat	TABLE 2.7 Un	ified Soil Classification	a System			
	e statistica statistica.		ellese (* Staal		So	il Classification
Soil Categories	Criteria fo	r Assigning Group Syn	nbols and Group Names U	Jsing Laboratory Tests ^a	Group Symbol	Group Name ^b
	(1)	(2)	(3)	(4)	(5)	(6)
Fine-Grained Soils	COARSE-	GRAVELS	CLEAN GRAVELS	$C_{\mu} \ge 4$ and $1 > C_{e} < 3^{e}$	GW	Well-graded gravel
\blacktriangleright more than 50% of soil by	GRAINED SOILS	More than 50% of coarse fraction	Less than 5% fines ^c	$C_u < 4 \text{ and/or} \\ 1 > C_c < 3^e$	GP	Poorly graded gravel ^f
weight is smaller than 0.075 mm):	More than 50% retained on	retained on No. 4	GRAVELS WITH FINES	Fines classify as ML or MH	GM	Silty gravel ^{fg,h}
,	No. 200 sieve	still relation of the lines	More than 12% fines ^c	Fines classify as CL or CH	GC	Clayey gravel ^{fg,h}
Silt (M):	in ind	SANDS	CLEAN SANDS	$C_u > 6 \text{ and } 1 < C_c < 3^e$	SW	Well-graded sand
 ML: Low plasticity silt. 	(Church Adda) (Church Cadda)	50% or more of coarse	Less than 5% fines ^d	$C_u < 6 \text{ and/or} \\ 1 > C_c > 3^e$	SP .	Poorly graded sand
	an salar i	fraction passes No. 4 sieve	SANDS WITH FINES	Fines classify as ML or MH	SM	Silty sand ^{g,h,i}
MH: High plasticity silt.			More than 12% fines ^d	Fines classify as CL or CH	SC	Clayey sand ^{g,h,i}
Clay (C):	FINE- GRAINED	SILTS AND CLAYS	Inorganic	PI > 7 and plots on or above "A"-line ¹	CL.	Lean clay ^{k,l,m}
CL: Low plasticity clay.	SOILS 50% or more	Liquid limit less than 50	iç da şturaştır.	PI < 4 and plots below "A"-line"	ML	Silt ^{k,l,m}
CH: High plasticity clay	passes No. 200	ान्त्रे संवतन्त्रेय अन्द्रवे ह संवद्यप्रिंगितन्त्रव्यान्त्रे त	Organic	$\frac{\text{LL}_{\text{oven-dried}}}{\text{LL}_{\text{natural}}} < 0.75$	COL:	Organic clay ^{k,l,m,n} Organic silt ^{k,l,m,o}
	sieve	SILTS AND CLAYS	Inorganic	PI plots on or above "A"-line	CH	Fat clay ^{k,l,m}
	dan na haran a	Liquid limit 50	Reprint Sample	PI plots below "A"-line	MH	Elastic silt ^{k,Lm}
		or more	Organic	$\frac{LL_{oven-dried}}{LL_{natural}} < 0.75$	OH	Organic clay ^{k,l,m,p} Organic silt ^{k,l,m,q}
	Highly organic s	oils	Primarily organic matte organic odor	r, dark in color, having	Pt	Peat

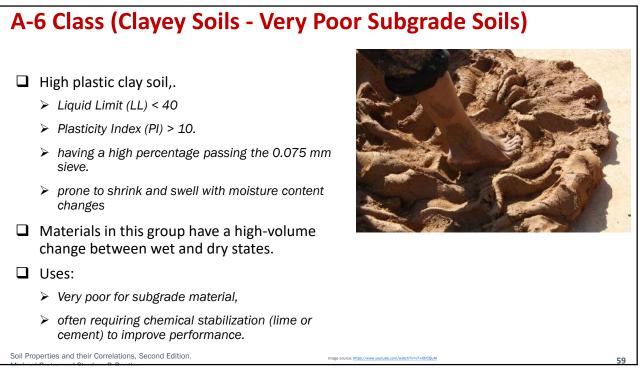


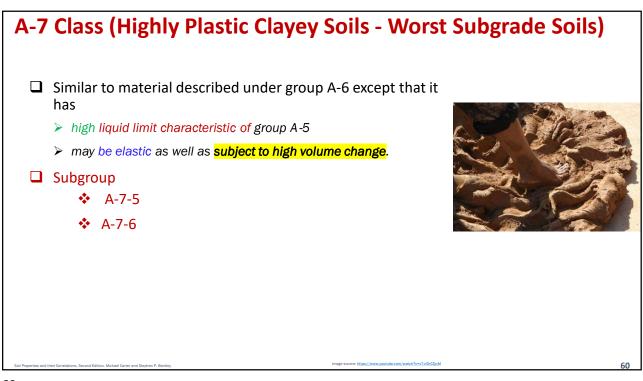


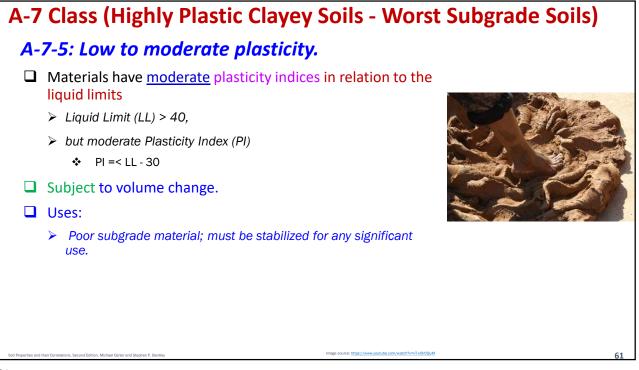


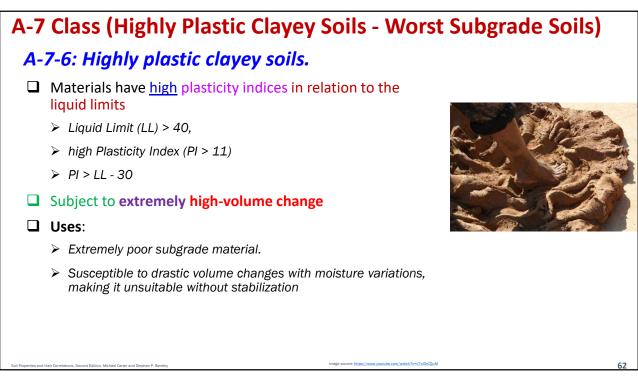

Feature	Granular Materials (A-1, A-3)	Silt-Clay Materials (A-4 to A-7)
Composition	Coarse materials (gravel, sand)	Fine materials (silt, clay)
Grain Size	Larger particle sizes	Smaller particle sizes
Plasticity	Low plasticity	High plasticity
Strength	High load-bearing capacity	Lower load-bearing capacity
Drainage	Excellent drainage	Poor drainage
Compaction	Easy to compact	Difficult to compact
Typical Uses Ideal for highway subgrade		Often requires stabilization fo use





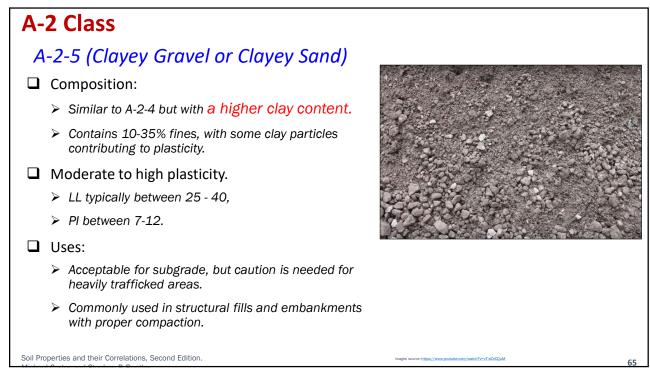




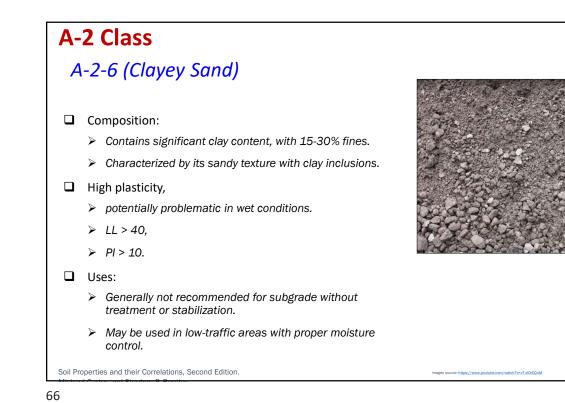


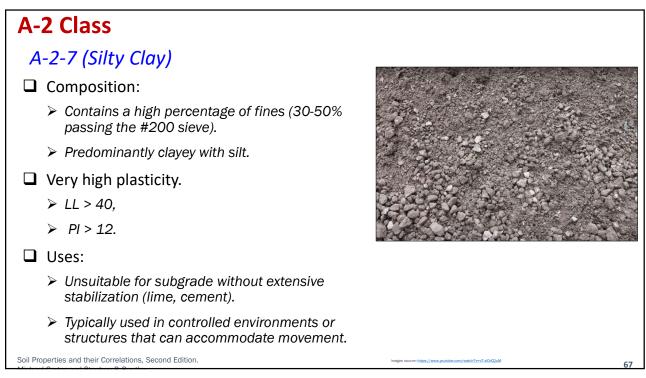
A-2 Class (Granular Materials with Fines - Variable Subgrade Soils)

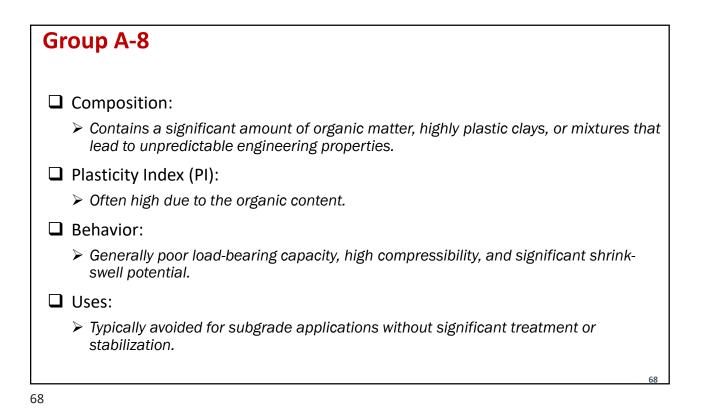
- It Includes
 - a wide variety of 'granular' materials Which are borderline between the granular A-I and A-3 groups and the silty clay materials of groups A-4 to A-7.
- □ They are classified into several subgroups based on the percentage of fines and plasticity characteristics.
 - ≽ A-2-4
 - ≻ A-2-5
 - ≻ A-2-6
 - ≽ A-2-7


63

A-2 Class A-2-4 (Silty Gravel or Silty Sand) Composition: Contains a moderate percentage of fine particles (10 - 35% passing the #200 sieve). Typically has a higher gravel or coarse sand content. Moderate plasticity Typically, less than 10% fines. LL < 40, PI < 10.


- Uses:
 - > Suitable for subgrade in lightly trafficked roads.
 - Can be used in embankments and backfill applications.


Soil Properties and their Correlations, Second Edition.



Soil Properties for Classification

Atterberg Limits:

Liquid Limit (LL):

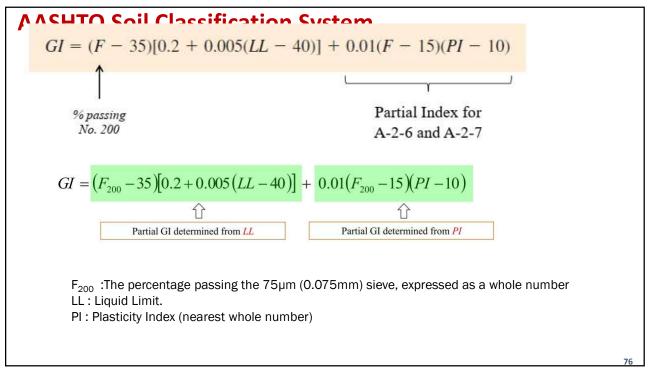
> The moisture content at which the soil changes from plastic to liquid state.

□ Plastic Limit (PL):

> The moisture content at which the soil changes from semi-solid to plastic state.

□ Plasticity Index (PI):

 \blacktriangleright PI = LL-PL


Classification Procedures

- 1. Sample Collection:
 - > Collect undisturbed soil samples from the site.
- 2. Sieve Analysis:
 - > Conduct a sieve analysis to determine the distribution of particle sizes.
- 3. Atterberg Limits Testing:
 - > Perform LL and PL tests to obtain plasticity values.
- 4. Assigning AASHTO Group Symbols:
 - Use results from grain size distribution and Atterberg limits to classify according to AASHTO guidelines.
 - 1. Apply the test data from <u>left</u> to <u>right</u>
 - 2. Apply process of elimination,
 - The <u>first group</u> from the left into which the test data fit is the correct classification
- 5. Interpretation of Results:
 - > Assess suitability for engineering applications based on AASHTO group

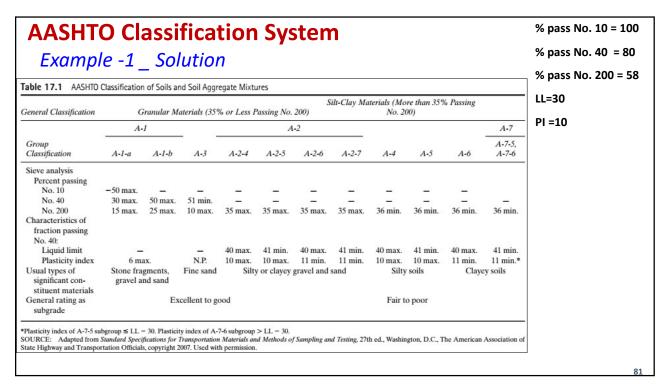
GENERAL CLASSIFICATION		(3	GRANULA 35% or less pas)		SIL	F-CLAY N (> 35% 0.075mi	passing	ALS
Group classification	A	-1		A-2						A-7	
	A-1-a	A-1-b	A-3	A-2-4	A-2-5	A-2-6	A-2-7	A-4	A-5	A-6	A-7-5 A-7-6
Sieve analysis, % passing:											
2mm (No. 10)	50 max	-	-	-	-	-	-	-	-	-	-
0.425mm (No. 40)	30 max	50 max	51 min	-	-	-	-	-	-	-	-
0.075mm (No. 200)	10 max	25 max	10 max	35 max	35 max	35 max	35 max	36 min	36 min	36 min	36 min
Fraction passing 0.425mm:											
Liquid limit		-	Non-plastic	40 max	41 min	40 max	41 min	40 max	41 min	40 max	41 min
Plasticity index	6 r	nax		10 max	10 max	11 min	11 min	10 max	10 max	11 min	11 min*
Usual types of significant constituents		agments, el, sand	Fine sand	Silty	or clayey	gravel and	l sand	Silty	soils	Clayey	y soils
General rating as a subgrade	Brut	en, sund	Excell	ent to goo	d				Fair to	poor	
* Plasticity index of A-7-5 su * Plasticity index of A-7-6 su	U 1				0.						

AASHTO Soil C	lassificati	on System				
Group Index (GI))					
Evaluate the quality of	a soil as <mark>highway s</mark>	subgrade material				
Originally the grou using the 'group ir	p index was used <mark>idex method</mark> '	directly to obtain pavement thickness de	signs,			
but this approach <u>as a guide.</u>	has long since be	een superseded and <mark>the group index is us</mark>	sed only			
In general, the quality proportional to the group of t		a soil as a subgrade material is <u>inversely</u>				
Higher GI indicate po	oor performance ma	aterials				
	GI value	Quality of material				
	0 to 1	Good subgrade material				
2 to 4 Fair subgrade material						
	5 to 9	Poor subgrade material				
	10 to 20	Very poor subgrade material				
			75			

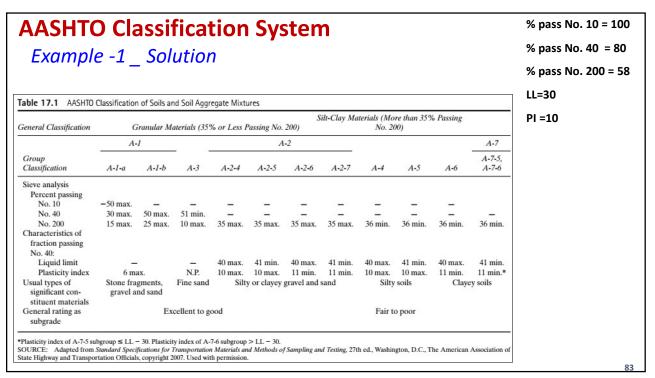
AASHTO Soil Classification System
Rules for the computed GI $GI = (F_{200} - 35)[0.2 + 0.005(LL - 40)] + 0.01(F_{200} - 15)(PI - 10)$
 This index is written in parentheses after the group or subgroup classification A-7 (35)
 IF the computed GI has a negative value, then it taken as GI=0
There is no upper limit for the group index
The computed GI is rounded to the nearest whole number
GI = 3.4 is rounded off to 3
\rightarrow GI = 3.5 is rounded off to 4
□ The group index of soils belonging to groups A-1-a, A-1-b, A-2-4, A-2-5, and A-3 is always 0
When calculating the group index for soils that belong to groups A-2-6 and A-2-7 use this formula
> $GI = 0.01 (F_{200}-15)(PI - 10)$
77

Table 3 – DGI Based on Soil Type

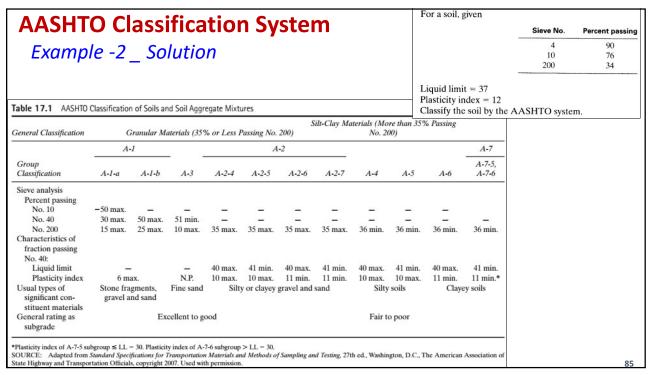
Soil Classification	Estimated DGI Range		
A-3 Clean Sand	0 to 2		
A-1 Gravelly Sand A-2 Non-plastic Sand with Silt	2 to 4		
A-2 Plastic Silty or Clayey Sand A-4 Sandy Silt	10 to 12		
A-4 Silt A-6 Lighter Clayey Silt	12 to 14		
A-6 Heavier Clayey Silt A-7 Silty Clay and Clay	14 to 16		


AASHTO Soil Classification System

Example -1


The results of the particle-size analysis of a soil are as follows:

Percent passing through the No. 10 sieve = 100Percent passing through the No. 40 sieve = 80Percent passing through the No. 200 sieve = 58


The liquid limit and plasticity index of the minus No. 40 fraction of the soil are 30 and 10, respectively. Classify the soil by the AASHTO system.

AASHTO Soil Classification SystemExample -1 _ SolutionSolutionSolutionUsing Table 4.1, since 58% of the soil is passing through the No. 200 sieve, it falls
under silt-clay classifications – that is, it falls under group A-4, A-5, A-6, or A-7.
Proceeding from left to right, it falls under group A-4.
From Eq. (4.1), $GI = (F_{200} - 35)[0.2 + 0.005(LL - 40)] + 0.01(F_{200} - 15)(PI - 10)$
= (58 - 35)[0.2 + 0.005(30 - 40)] + (0.01)(58 - 15)(10 - 10)
 $= 3.45 \approx 3$ So, the soil will be classified as A-4(3).

$ \begin{array}{r} 4 & 90 \\ 10 & 76 \\ 200 & 34 \end{array} $ quid limit = 37	For a soil, given		
quid limit = 37		Sieve No.	Percent passing
200 34 quid limit = 37		4	90
quid limit = 37		10	76
·		200	34
·	iquid limit = 37		
Asticity index = 12	lasticity index $= 12$		

AASHTO Classification System

Example -3 solution

Solution

The percentage passing through the No. 200 sieve is less than 35, so the soil is a granular material. From Table 4.1, we see that it is type A-2-6. From Eq. (4.2),

$$GI = 0.01(F_{200} - 15)(PI - 10)$$

For this soil, $F_{200} = 34$ and PI = 12, so

$$GI = 0.01(34 - 15)(12 - 10) = 0.38 \approx 0$$

Thus, the soil is type A-2-6(0).

Main Soil Groups for Road Construction

Comparison of soil groups in the Unified and AASHTO systems

nparison o	f soil groups in the	e Un <u>ified and</u>	AASHTO systems			
Comparing Unified ASTM with AASHTO		Compari	Comparing AASHTO with		Soil Classification	
		Un	ified ASTM	Group Symbol	Group Name ^b	
Unified/ASTM soil group	Most probable AASHTO soil group	AASHTO soil group	Most probable Unified/ASTM soil group	(5) GW GP	(6) Well-graded gravel Poorly graded gravel ^f	
GW GP	A-1-a A-1-a	A-1-a A-1-b	GW, GP SW, SP, GM, SM	GM GC	Silty gravel ^{fg,h}	
GM	A-1-b, A-2-4 A-2-5, A-2-7	A-3	SP	SW	Well-graded sand	
GC SW	A-2-6, A-2-7 A-1-b	A-2-4 A-2-5	GM, SM GM, SM	SP SM	Poorly graded san Silty sand ^{g,h,i}	
SP SM	A-3, A-1-b A-1-b, A-2-4	A-2-6 A-2-7	GC, SC GM, GC, SM, SC	SC	Clayey sand ^{g,h,i}	
SC ML CL OL MH	A-2-5, A-2-7 A-2-6, A-2-7 A-4, A-5 A-6, A-7-6 A-4, A-5 A-7-5, A-5	A-4 A-5 A-6 A-7-5 A-7-6	ML, OL OH, MH, ML, OL OL OH, OM CH, CL	CL ML OL CH	Lean clay ^{k,l,m} Silt ^{k,l,m} Organic clay ^{k,l,m,n} Organic silt ^{k,l,m,o} Fat clay ^{k,l,m}	
CH OH Pt	A-7-5, A-5 A-7-5, A-5			MH	Elastic silt ^{k,Lm} Organic clay ^{k,Lm,p} Organic silt ^{k,Lm,q}	
	ons, Second Edition. Michael Carter and Ste	phen P. Bentley		Pt	Peat	