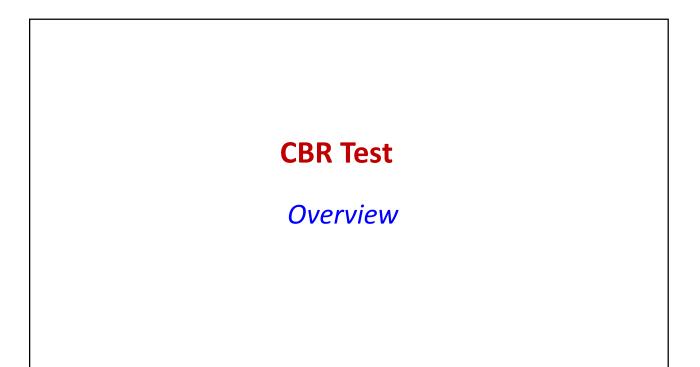
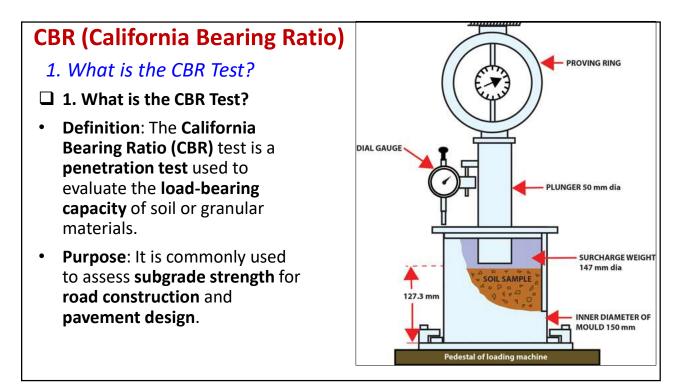


Soil for Road Construction


Laboratory tests


Test Name	Purpose	Standards ASTM D4767, AASHTO T296/T297	
Triaxial Shear Test	Measures soil strength under load		
Unconfined Compression Test	Measures compressive strength for cohesive soils	ASTM D2166, AASHTO T208	
Consolidation Test	Measures soil settlement under long-term load	ASTM D2435, AASHTO T216	
Permeability Test (Hydraulic Conductivity)	Determines soil drainage capacity	ASTM D2434	
Particle Size Distribution	Determines particle size for classification	ASTM D422, AASHTO T88	
Atterberg Limits (LL, PL, PI)	Measures soil plasticity and consistency	ASTM D4318, AASHTO T89/T90	
Proctor Compaction Test	Determines maximum dry density and optimum moisture content	ASTM D698, ASTM D1557, AASHTO T99, T180	
alifornia Bearing Ratio (CBR) Measures soil bearing capacity for subgrades		ASTM D1883, AASHTO T193	

Soil for Road Construction

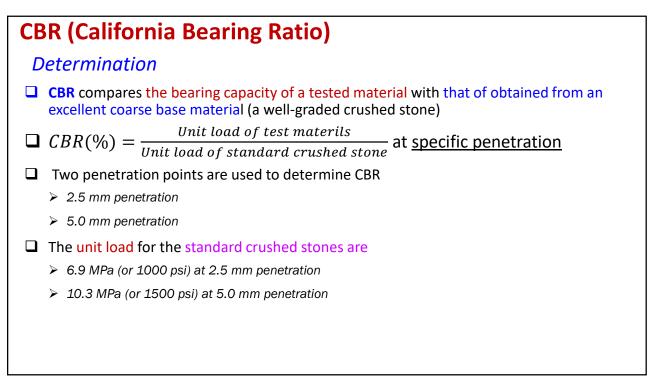
Field tests

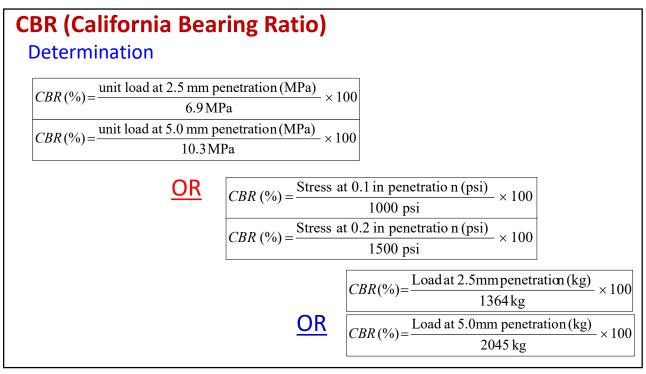
Test Name	Purpose	Standards
Nuclear Density Test	Measures in-situ density and moisture content	ASTM D6938
Field Density Test (Sand Cone Method)	Determines in-situ soil density and compaction	ASTM D1556, AASHTO T191
In-Situ CBR Test	Evaluates bearing capacity directly on the field	ASTM D4429
Plate Load Test	Evaluates load-bearing capacity of soil	ASTM D1194
In-Situ Moisture Content Test	Measures natural soil moisture content	ASTM D2216
Dynamic Cone Penetrometer (DCP)	Measures strength and compaction quality of subgrades	ASTM D6951
Standard Penetration Jest (SPL)	Assesses soil strength and density for deep foundations	ASTM D1586, AASHTO T206
Field Permeability Test	Determines field permeability and drainage	Various

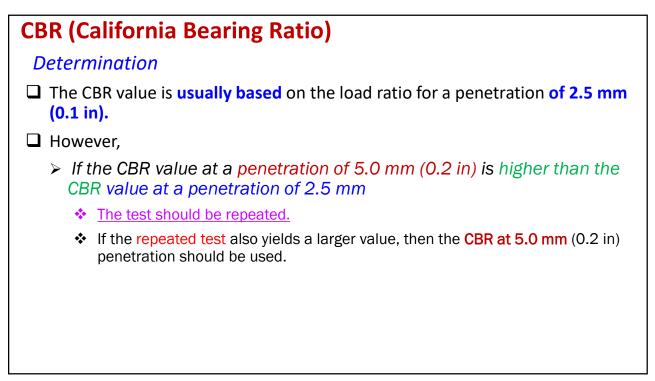
CBR Test

2. CBR Test Procedure

Step 1: Soil Preparation

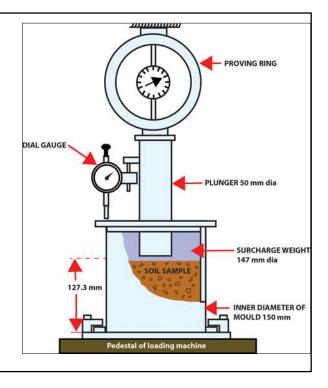

• The soil sample is **compacted** into a mold to a specific **maximum dry density (MDD)** determined through a Proctor test.

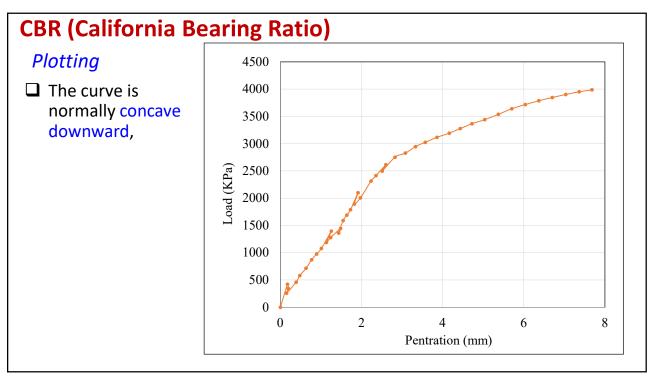

• Step 2: Loading


- A *penetration plunger* applies force to the sample at a controlled rate (1.25 mm/min), and the force required for penetration is recorded at **2.5 mm** and **5.0 mm** depths.
- Step 3: Calculation
 - The CBR value is calculated as the ratio of the measured force to the force required to penetrate a standard material (crushed stone).

$$ext{CBR} = \left(rac{ ext{Measured Load}}{ ext{Standard Load}}
ight) imes 100$$

CBR (California Bearing Ratio) Test procedures

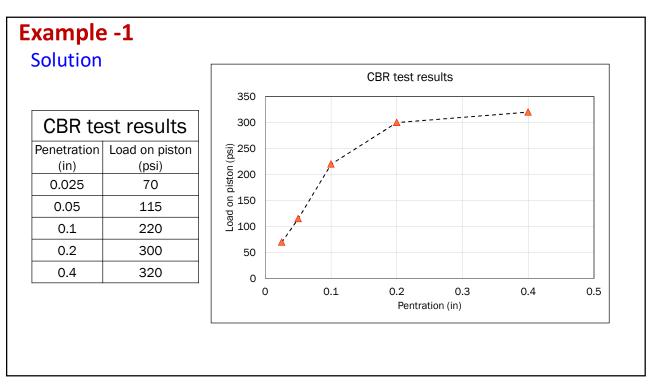


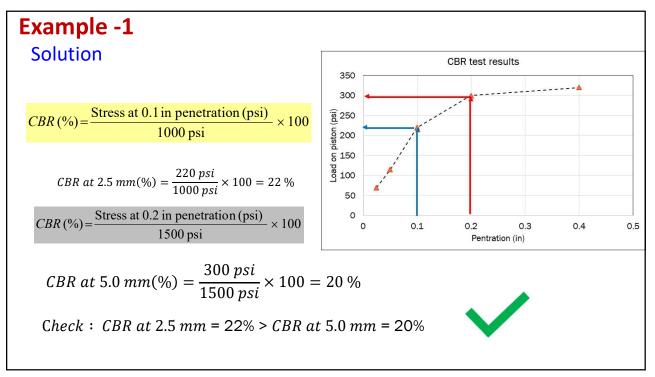

CBR (California Bearing Ratio)

Test Outputs

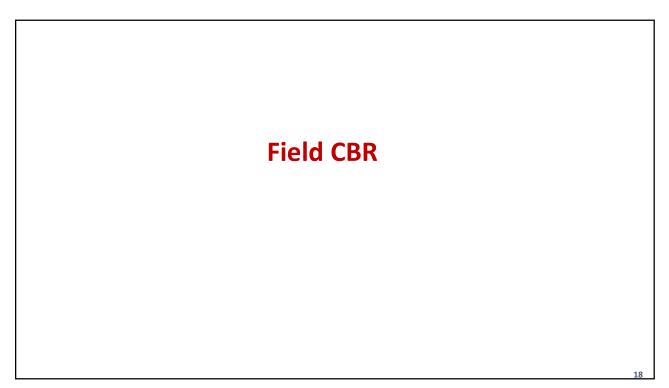
CBR test resultsPenetration (in)Load on piston (psi)0.02570

0.05	115
0.1	220
0.2	300
0.4	320




Example -1

\Box Find the CBR value at 2.5 mm (0.1 in) and 5.00 mm (0.2)


CBR test results		
Penetration (in) Load on piston (psi		
0.025	70	
0.05	115	
0.1	220	
0.2	300	
0.4	320	

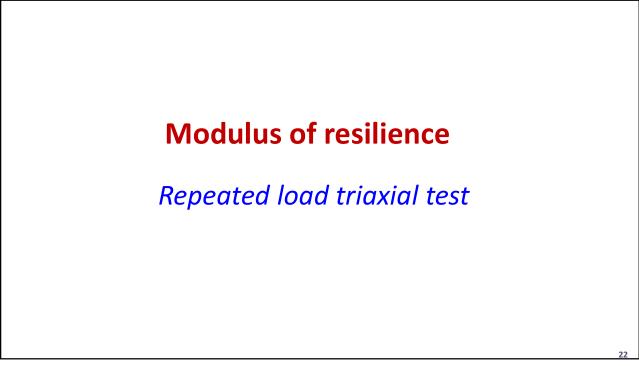
Example -1 **Solution** CBR test results Penetration Load on piston 350 (in) (psi) 300 0.1 220 (js) 250 0.2 300 1) 200 150 100 100 50 0 0.1 0.2 0.4 0.5 0 0.3 Pentration (in)

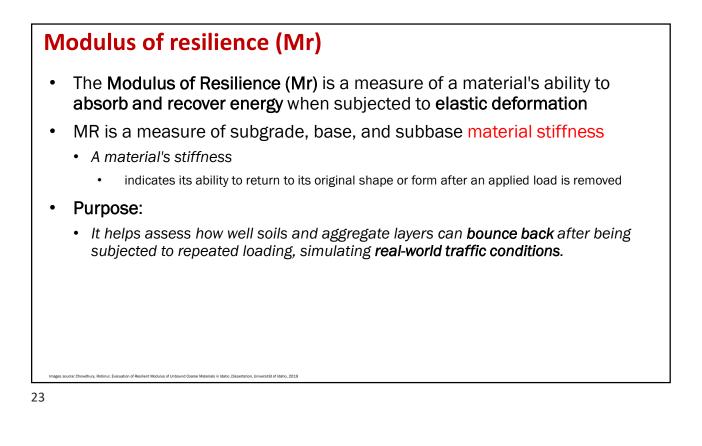
CPP typical	General Soil Type	USC Soil Type	CBR Range
CBR typical	Clean gravala	GW	40 - 80
values	Clean gravels	GP	30 - 60
	Orauala with finan	GM	20 - 60
	Gravels with fines	GC	20 - 40
	Clean condo	SW	20 - 40
	Clean sands	SP	10 - 40
	Condo with first	SM	10 - 40
	Sands with fines	SC	5 – 20
		ML	15 or less
		CL	15 or less
	Cilta and alava	OL	5 or less
	Silts and clays	MH	10 or less
		CH (LL>50%)	15 or less
		OH	5 or less

Field CBR Test

Overview

- **Definition**: The **Field CBR Test** is a variation of the **California Bearing Ratio** (CBR) test conducted **on-site** to determine the **in-situ load-bearing capacity** of soil or granular materials under field conditions.
- **Purpose**: It helps assess the **compaction quality** and **strength** of **subgrade**, **subbase**, or **base layers** in real-time during constructio


Field CBR Test


Procedure

- Step 1: Preparation
 - The test is typically conducted in a **compacted layer** in the field, with an excavation made to the desired depth.
 - A circular plunger is placed on the soil surface to apply pressure.
- Step 2: Loading
 - Apply a vertical load using a loading machine or jack, and record the force required for penetration at 2.5 mm and 5.0 mm depths.
- Step 3: Calculation
 - The **Field CBR value** is calculated as a percentage, comparing the measured load to a **standard load** for a given penetration depth.

$$\text{Field CBR} = \left(\frac{\text{Measured Load}}{\text{Standard Load}}\right) \times 100$$

Modulus of resilience (Mr)

Procedure

- Step 1: Specimen Preparation
 - A cylindrical soil sample is compacted in the laboratory to a specified density and moisture content.

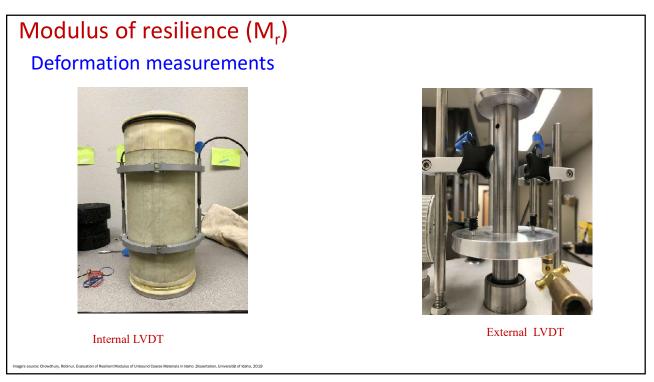
• Step 2: Loading

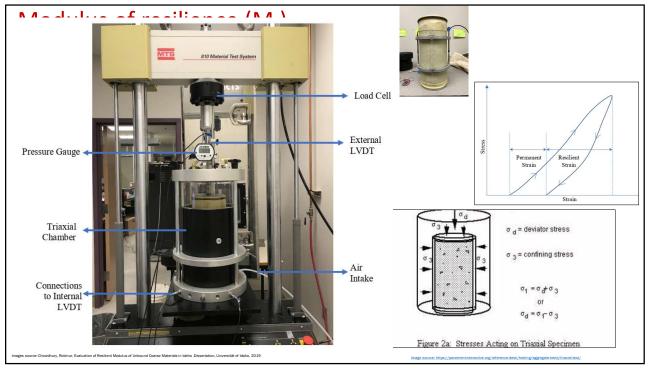
- The soil specimen is subjected to a series of **cyclic loading** in a triaxial testing apparatus. These loads are applied repeatedly to simulate **traffic loading**.
- Step 3: Measurement
 - The **resilient strain** (deformation under load) is recorded. The **Modulus of Resilience** (*Mr*) is calculated by dividing the **applied stress** by the **resilient strain**.

 $\mathrm{Mr} = \frac{\mathrm{Applied\ Stress}}{\mathrm{Resilient\ Strain}}$

Modulus of resilience (M_r) Preparation of specimen for resilient modulus test

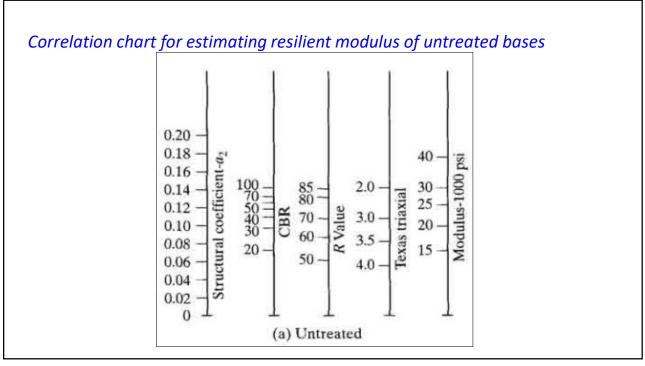
(a) Split mold

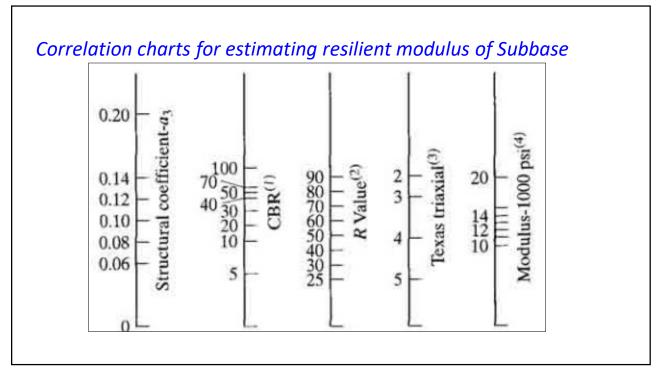

(b) Membrane stretcher



(c) unmolded specimen after compaction

(d) specimen with rubber membrane


Modulus of resilience (M_r)


Importance

- □ Measure of fundamental material property
- Dynamic load testing similar to traffic loading
- **Essential input** in <u>mechanistic-empirical pavement design</u>
- Mr values are critical for designing flexible pavements (THICKNESS determination), ensuring that the materials can withstand traffic loads and maintain their structural integrity over time.

Mr Typical range				
	AASHTO Soil Classification	Base/Sub base for Flexible and Rigid Pavements	Embankment and Subgrade for Flexible Pavements	Embankment and Subgrade for Rigid Pavements
	A-1-a	40,000	29,500	18,000
	A-1-b	38,000	26,500	18,000
	A-2-4	32,000	24,500	16,500
	A-2-5	28,000	21,500	16,000
	A-2-6	26,000	21,000	16,000
	A-2-7	24,000	20,500	16,000
	A-3	29,000	16,500	16,000
	A-4	24,000	16,500	15,000
	A-5	20,000	15,500	8,000
	A-6	17,000	14,500	14,000
	A-7-5	12,000	13,000	10,000
	A-7-6	8,000	11,500	13,000

