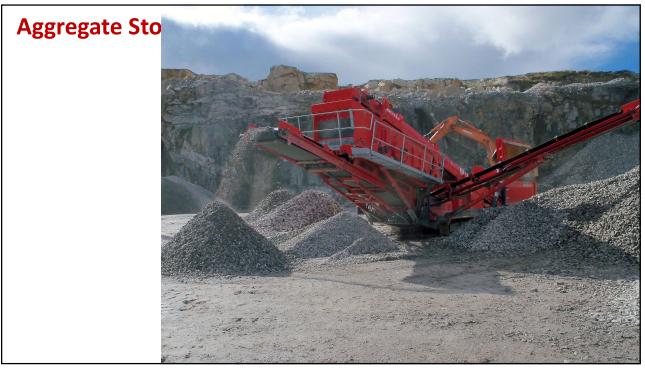

Pavement Materials & Design 3.1_Aggregates for road constructions_ Part 1 Dr: Hamza Alkulme



Aggregate Production

Properties of Aggregates

- 1. Particle size and gradation.
- 2. Hardness or resistance to wear
- 3. Durability or resistance to weathering.
- 4. Chemical stability
- 5. Particle shape and surface texture.
- 6. Freedom from deleterious particles or substances.
- 7. Specific gravity & absorption.

Particle size distribution (gradation)

Gradation

- **Blend of particle sizes in the mix.**
- > It is the most important property of an aggregate

13

Importance of Aggregate Gradation for Subgrade Layer

□ Soil Stability:

- Proper gradation provides uniform particle distribution, increasing the stability and bearing capacity of the subgrade.
- > Well-graded subgrade improves the overall support to the pavement structure.

Compaction Efficiency:

- > Well-graded aggregates facilitate better compaction, leading to a denser and more uniform subgrade.
- > Enhances the foundation's ability to resist traffic loads without excessive deformation.

Load Distribution:

- > A well-graded subgrade ensures even distribution of loads, minimizing stress on underlying soils.
- > Prevents rutting and surface deflection, improving the durability of the pavement.

Importance of Aggregate Gradation for

Base/Subbase Layers

Given Structural Stability:

- Well-graded aggregates provide dense packing, leading to higher stability and resistance to deformation.
- > Ensures load distribution, preventing localized stress that can cause rutting.

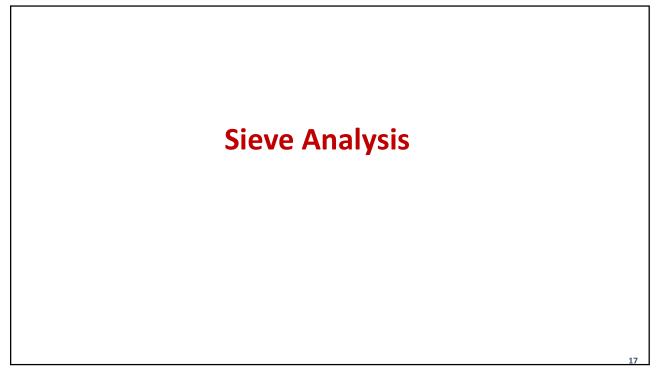
D Permeability and Drainage:

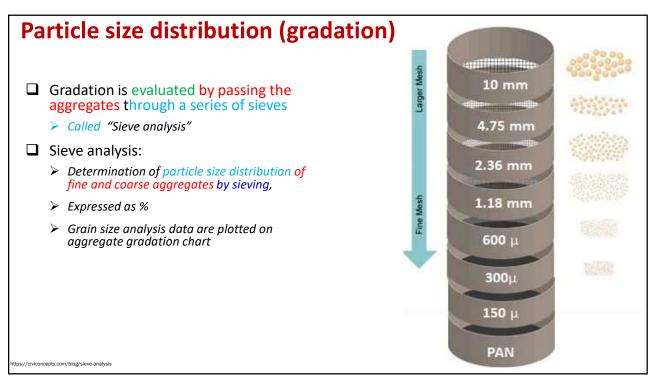
Controls void spaces within the aggregate, ensuring proper drainage.

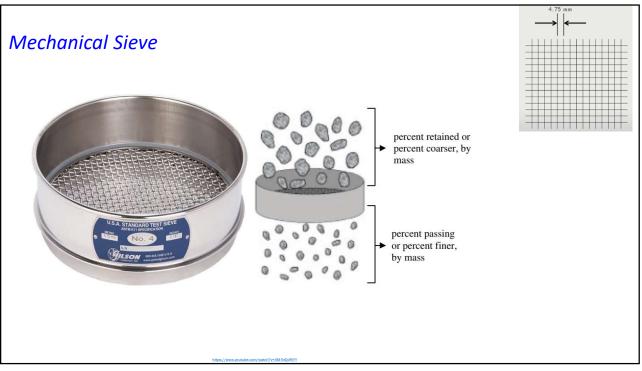
Compaction and Density:

- > Well-graded materials compact to higher densities, improving load-bearing capacity.
- Minimizes settlement and movement under traffic loads.

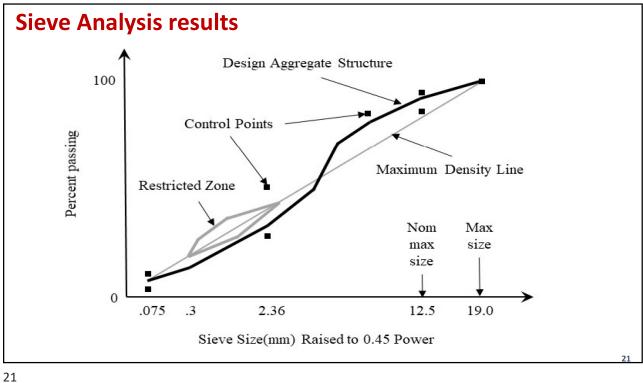
Importance of Aggregate Gradation for

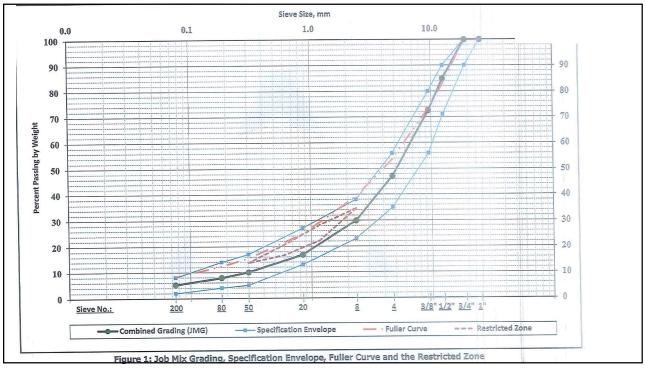

Asphalt Mixture Layer

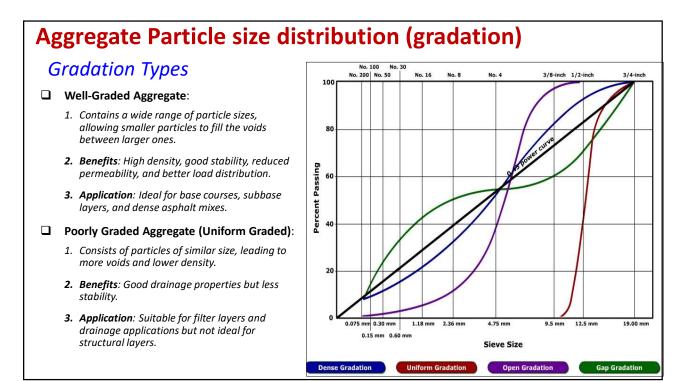

Structural Strength:

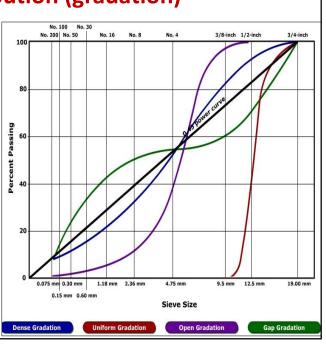

- Well-graded aggregates provide a dense particle arrangement, contributing to the strength and durability of the asphalt layer.
- Ensures high load-bearing capacity and resistance to traffic-induced stresses.

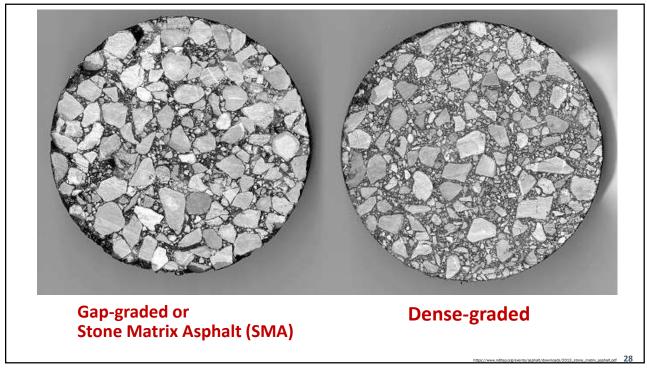
Compaction and Density:


- Proper gradation allows for optimal compaction, leading to higher density and improved performance of the asphalt mixture.
- Reduces air voids, increasing the durability and fatigue resistance of the asphalt pavement.
- Workability and Mix Stability:
 - Well-graded aggregates improve the workability of the asphalt mix during construction.
 - Provides a stable mix that resists segregation.
- Resistance to Deformation (Rutting):
 - Adequate gradation reduces susceptibility to permanent deformation (rutting) under heavy traffic loads.
- Durability and Resistance to Cracking:
 - Proper gradation enhances the asphalt's ability to resist cracking, particularly thermal and fatigue cracking.

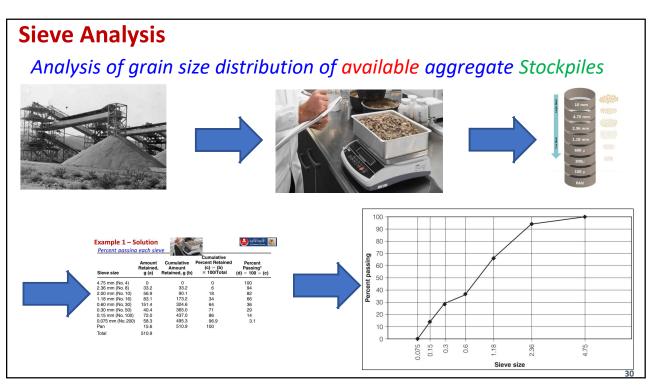


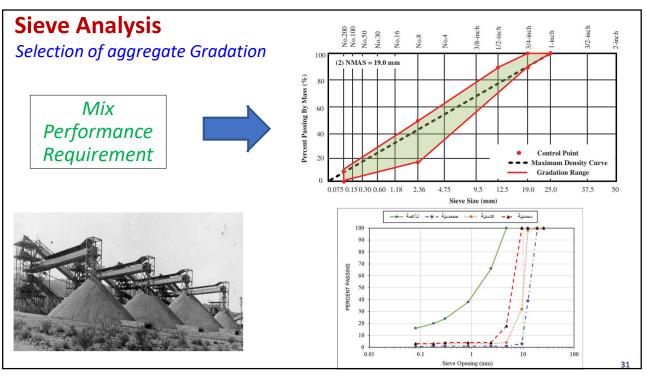

Sieve Analysis e	example					
Example -2	Sieve Designation	Aggregate weight retained (g)	Aggregate percent retained (%)	Cumulative weight retained (g)	Cumulative percent retained (%)	Cumulative percent passing (%)
mass	12.5	0	0	0	0	100
	9.5	480	4.8	480	4.8	95.2
→ or percent finer, by mass	4.75	1540	15.6	2020	20.4	79.6
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.36	2240	22.6	4260	43	57
	1.18	1300	13.1	5560	56.1	43.9
	0.6	1650	16.7	7210	72.8	27.2
	0.3	740	7.5	7950	80.3	19.7
	0.15	720	7.3	8670	87.6	12.4
	0.075	930	9.4	9600	97	3
	0	300	3	9900	100	0
	Total	9600				

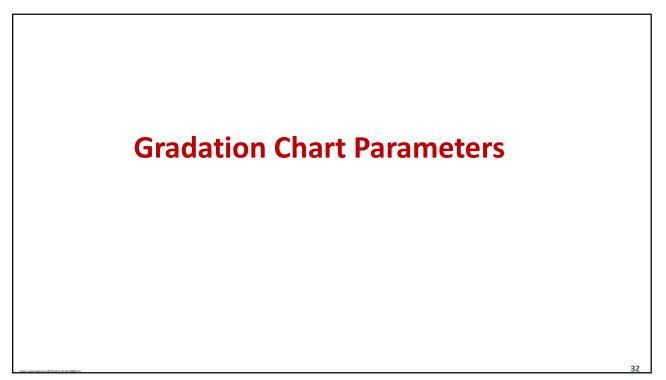


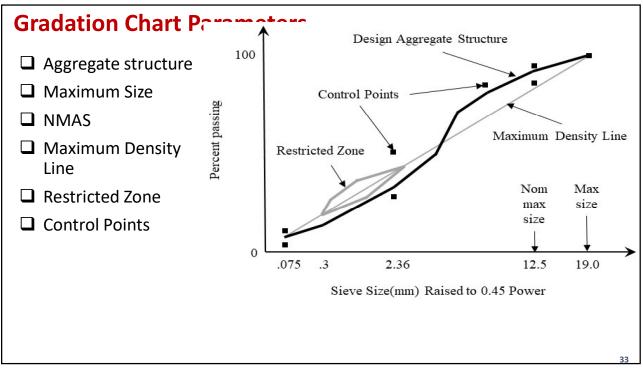

Aggregate Particle size distribution (gradation)

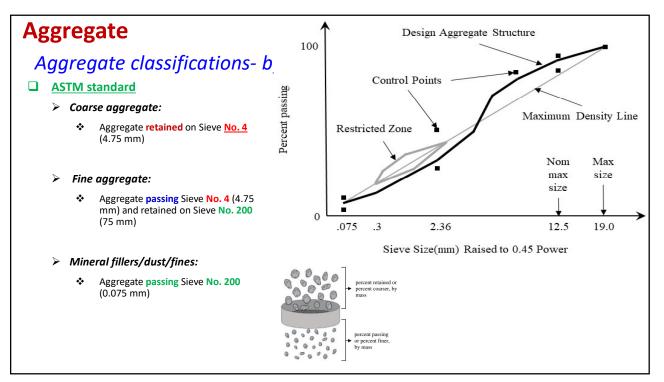
Gradation Types

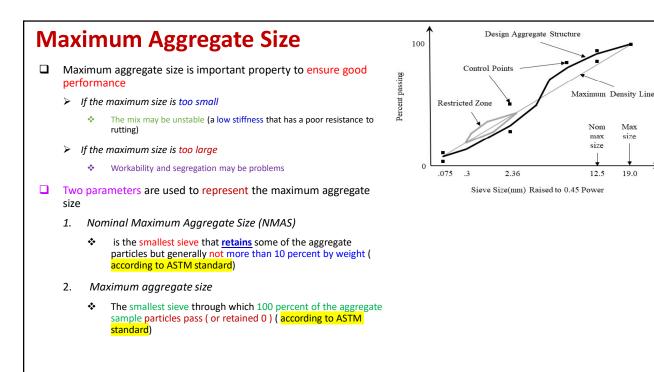

- Gap-Graded Aggregate (Stone Matrix Asphalt (SMA) :
 - 1. Missing intermediate particle sizes, with a mix of large and small particles.
 - **2.** Benefits: High durability and resistance to cracking, commonly used in stone mastic asphalt (SMA).
 - **3. Application**: Used in specialized pavement layers like surface courses where durability is critical.
- **Open-Graded Aggregate:**
 - 1. Contains mostly larger particles with fewer fines, creating significant void spaces.
 - 2. Benefits: High permeability, excellent drainage, and reduced hydroplaning risks.
 - **3.** Application: Often used for permeable layers, porous asphalt, and drainage layers.

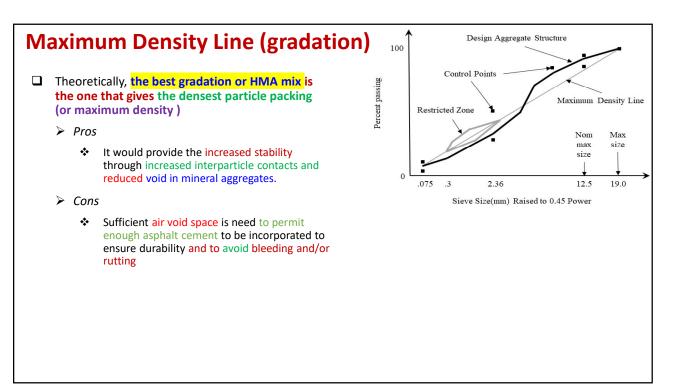


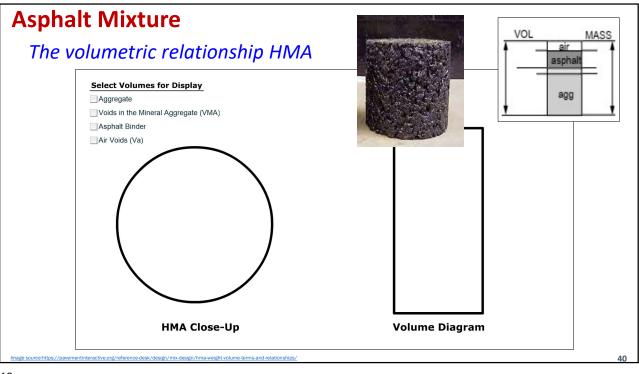


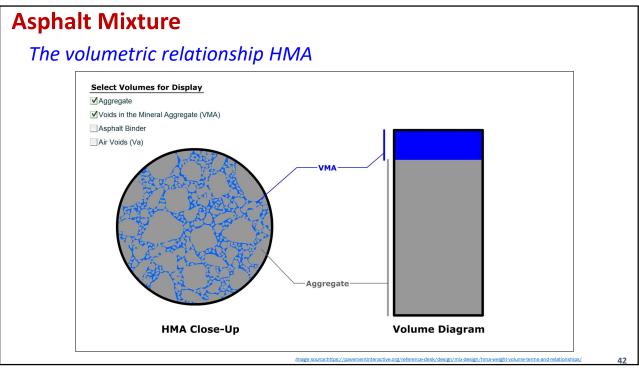


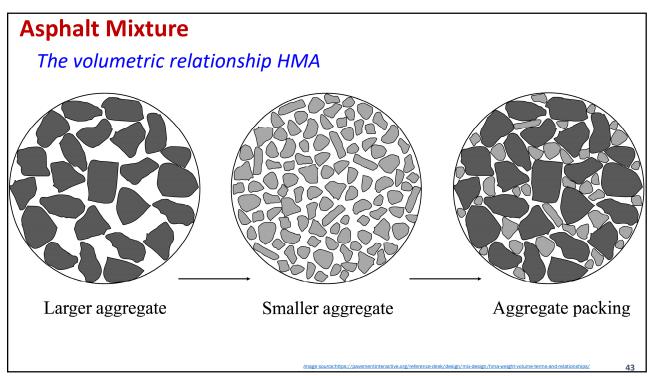


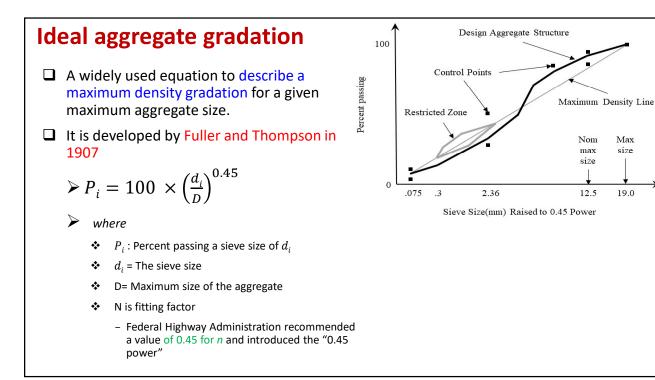


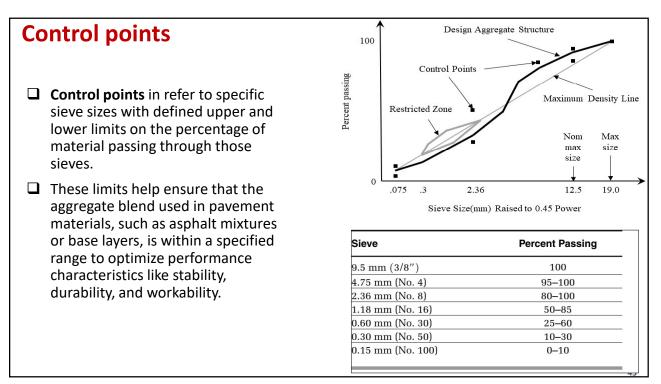


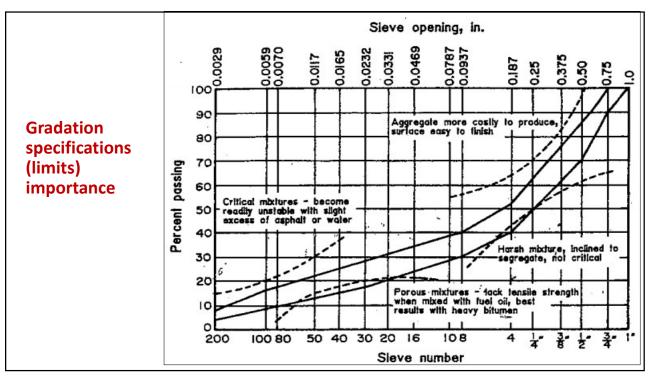


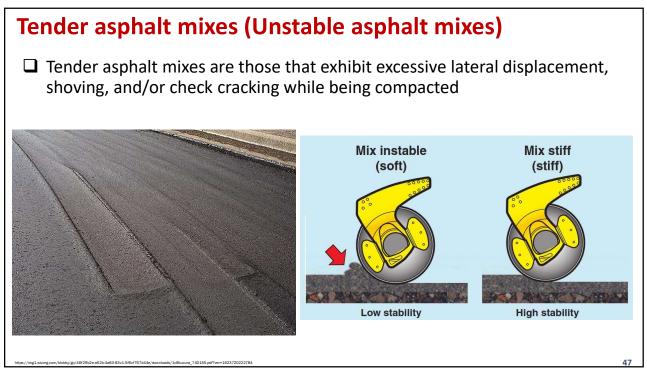

Max

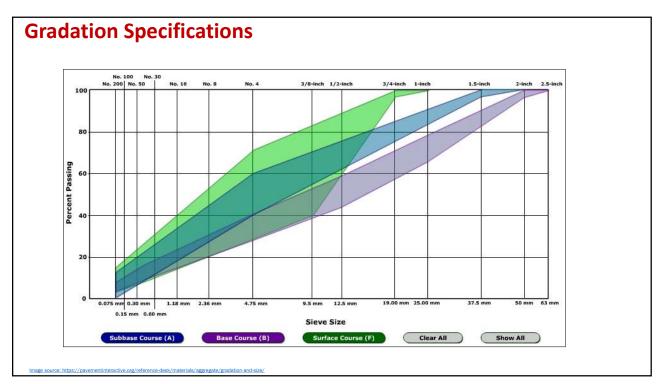

size

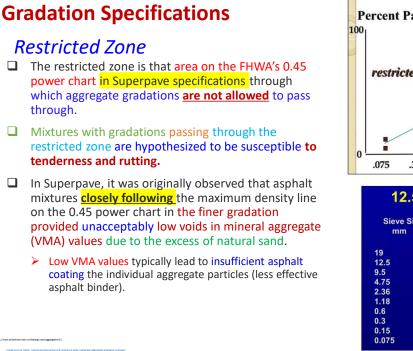

19.0







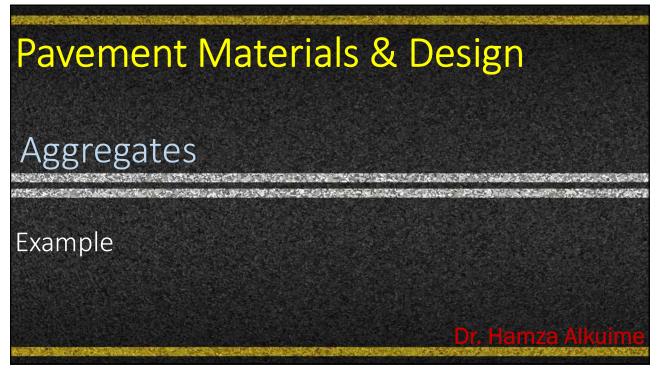



Gradation specifications (limits)

Control point of different NMAS (AASHTO M323).

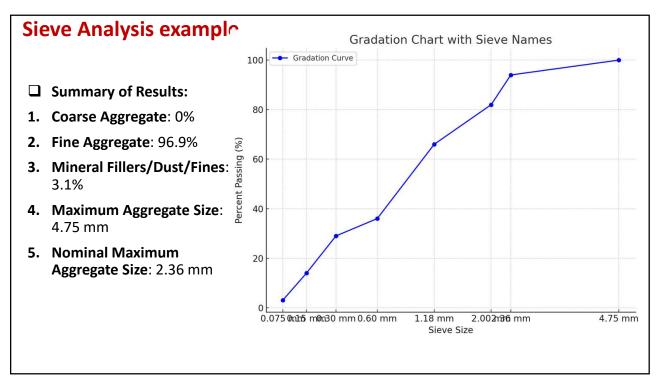
37.5 mm 25.0 mm 19.0 mm Sieves, mm Min. Max. Min. Max. Min. Max. 50.0 100 - <	Min. – – – 100	5 mm Max. – – –	9.5 r Min. – –	mm Max. – –	4.75 Min.	mm Max. –
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			-	Max. _ _	Min.	Max.
37.5 90 100 100 - - - 25.0 - 90 90 100 100 - 19.0 - - - 90 90 100 12.5 - - - 90 90 100				-	-	-
25.0 - 90 90 100 100 - 19.0 - - - 90 90 100 12.5 - - - - 90 90		_		-		
19.0 – – – 90 90 100 12.5 – – – – 90		-				—
12.5 90	100			-	-	-
		-	-	-	-	-
	90	100	100	-	100	-
9.5	-	90	90	100	95	-
4.75	-	-	-	90	90	100
2.36 15 41 19 45 23 49	28	58	32	67	-	-
1.18	-	-	_	-	30	60
0.075 0 6 1 7 2 8	2	10	2	10	6	12

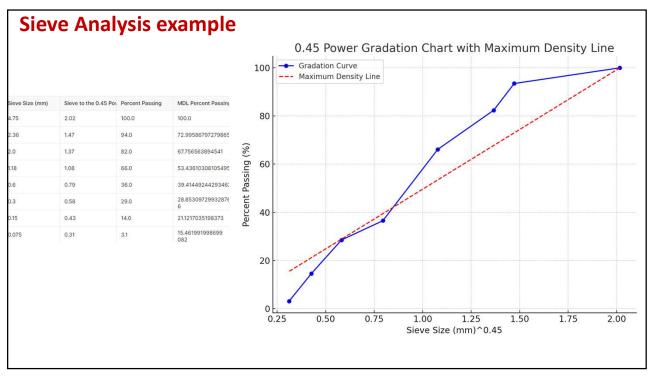
Table 2. Control point of different NMAS (AASHTO M323).

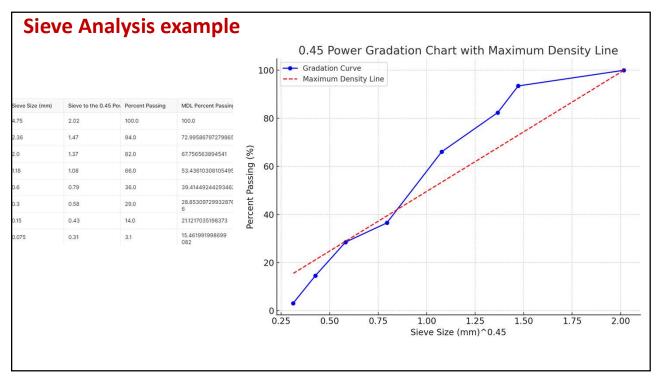


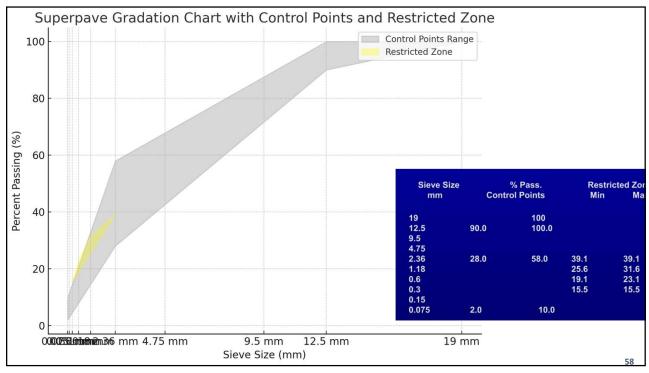
Percent Passing 100 max density line restricted zone control point nom max size size size size 100 0 .075 .3 2.36 4.75 9.5 12.5 19.0

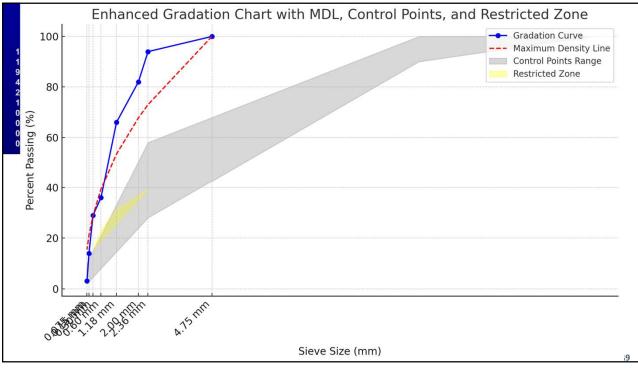

12.5 mm Superpave Gradation

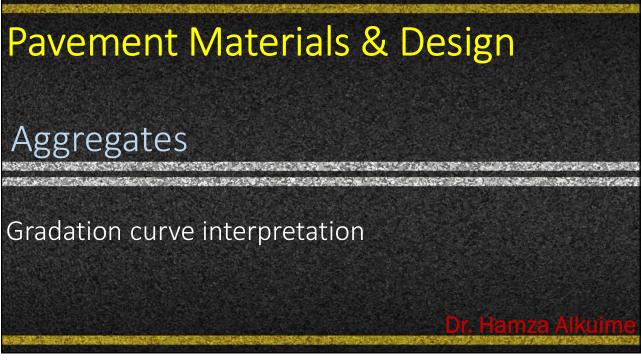

Sieve Size		% Pass.	Restr	icted Zone
mm	Contr	ol Points	Min	Max
19		100		
12.5	90.0	100.0		
9.5				
4.75				
2.36	28.0	58.0	39.1	39.1
1.18			25.6	31.6
0.6			19.1	23.1
0.3			15.5	15.5
0.15				
0.075	2.0	10.0		

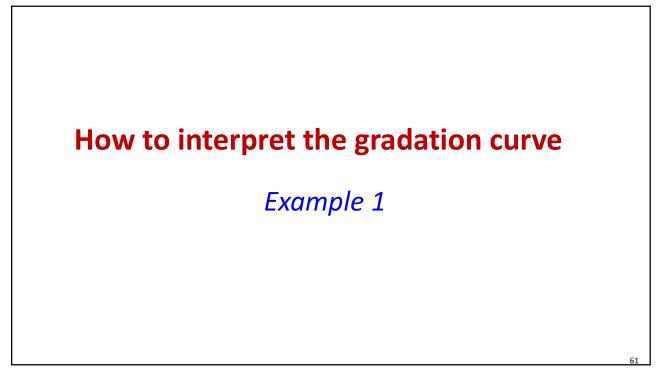



Sieve Analysis ex	ample	9							
Example -1									
A sieve analysis t produced the fol		•		in a sai	mple of	fine a	iggrega	ate and	
Sieve, mm	4.75	2.36	2.00	1.18	0.60	0.30	0.15	0.075	pan
Amount retained, g	0	33.2	56.9	83.1	151.4	40.4	72.0	58.3	15.6
Calculate the per	rcent pa	ssing e	each sie	eve					
Draw a 0.45 pow	er grad	ation c	hart w	ith the	use of	a spre	eadshe	et prog	ram.
	radatior	n chart	param	neters					


Example 1 – S	olution			
<u>Percent passina</u>	<u>each sie</u>	<u>ve</u>		
Sieve size	Amount Retained, g (a)	Cumulative Amount Retained, g (b)	Cumulative Percent Retained (c) = (b) × 100/Total	Percent Passing* (d) = 100 - (c)
4.75 mm (No. 4)	0	0	0	100
2.36 mm (No. 8)	33.2	33.2	6	94
2.00 mm (No. 10)	56.9	90.1	18	82
1.18 mm (No. 16)	83.1	173.2	34	66
0.60 mm (No. 30)	151.4	324.6	64	36
0.30 mm (No. 50)	40.4	365.0	71	29
0.15 mm (No. 100)	72.0	437.0	86	14
0.075 mm (No. 200)	58.3	495.3	96.9	3.1
Pan	15.6	510.9	100	
Total	510.9			







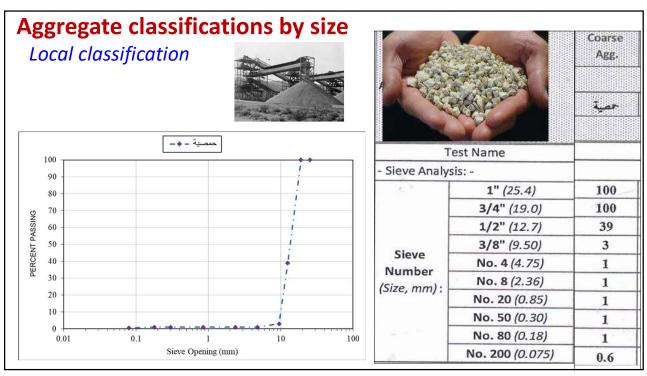
BE		N Fines	Rock	Washed Dust	Dirty Dust
	Sieve Size	% Passing	% Passing	% Passing	% Passing
and a series	5/8" (16mm)	100.0	100.0	100.0	100.0
Stere of the	1/2" (12.5mm)	100.0	100.0	100.0	100.0
and the second	3/8" (9.5mm)	100.0	63.0	100.0	100.0
and the second	#4 (4.75mm)	90.0	2.0	81.0	81.0
and the second se	#8 (2.36mm)	76.0	1.0	42.0	53.0
N	#16 (1.18mm)	62.0	1.0	25.0	37.0
LOCK	#30 (0.6mm)	47.0	1.0	13.0	28.0
	#50 (0.3mm)	26.0	1.0	9.0	21.0
1 UCA	#100 (0.15mm)	5.0	1.0	4.0	13.0
	#200 (0.075mm)	2.9	1.0	2.2	10.8
https://commons.und.edu/cgl/viewcontent.cgl?article=2993&context=theses	Pan	0.0	0.0	0.0	0.0

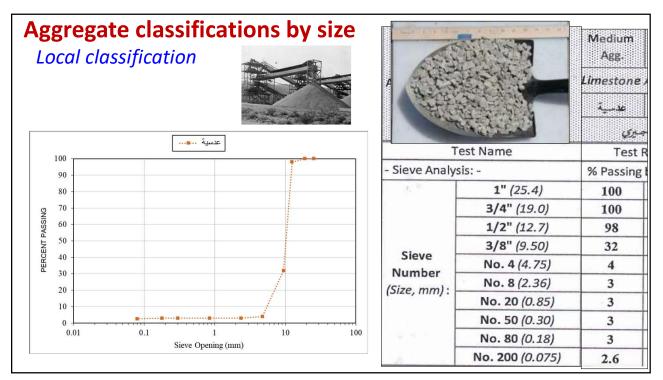
		N Fines	Rock	Washed	Dirty
	Sieve Size	% Passing	% Passing	Dust % Passing	Dust % Passing
	5/8" (16mm)	100.0	100.0	100.0	100.0
and the second s	1/2" (12.5mm)	100.0	100.0	100.0	100.0
	3/8" (9.5mm)	100.0	63.0	100.0	100.0
Alat	#4 (4.75mm)	90.0	2.0	81.0	81.0
	#8 (2.36mm)	76.0	1.0	42.0	53.0
10000	#16 (1.18mm)	62.0	1.0	25.0	37.0
	#30 (0.6mm)	47.0	1.0	13.0	28.0
FIDDE	#50 (0.3mm)	26.0	1.0	9.0	21.0
GTIN I	#100 (0.15mm)	5.0	1.0	4.0	13.0
	#200 (0.075mm)	2.9	1.0	2.2	10.8
https://commons.und.edu/ugi/viewcontent.og?raticle=2993&context=theses	Pan	0.0	0.0	0.0	0.0

Bizz					
		N Fines	Rock	Washed Dust	Dirty Dust
a tog	Sieve Size	% Passing	% Passing	% Passing	% Passing
	5/8" (16mm)	100.0	100.0	100.0	100.0
A R D. M. M. M. M.	1/2" (12.5mm)	100.0	100.0	100.0	100.0
and the second	3/8" (9.5mm)	100.0	63.0	100.0	100.0
the second states	#4 (4.75mm)	90.0	2.0	81.0	81.0
A CARE TRACE OF THE STATE	#8 (2.36mm)	76.0	1.0	42.0	53.0
	#16 (1.18mm)	62.0	1.0	25.0	37.0
	#30 (0.6mm)	47.0	1.0	13.0	28.0
A A A A A A A A A A A A A A A A A A A	#50 (0.3mm)	26.0	1.0	9.0	21.0
The state	#100 (0.15mm)	5.0	1.0	4.0	13.0
and the second	#200 (0.075mm)	2.9	1.0	2.2	10.8
https://commons.und.edu/cgi/viewcontent.cgi?article=2993&context=theses	Pan	0.0	0.0	0.0	0.0

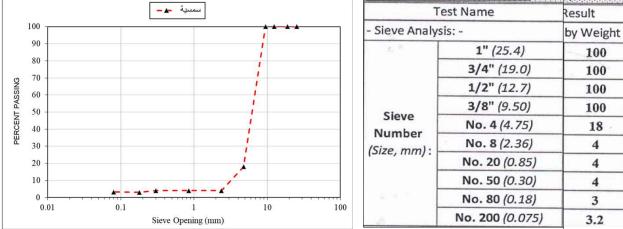
		N Fines	Rock	Washed Dust	Dirty Dust
C BREAK	Sieve Size	% Passing	% Passing	% Passing	% Passing
	5/8" (16mm)	100.0	100.0	100.0	100.0
	1/2" (12.5mm)	100.0	100.0	100.0	100.0
1 1	3/8" (9.5mm)	100.0	63.0	100.0	100.0
()-dal	#4 (4.75mm)	90.0	2.0	81.0	81.0
INIGSTER	#8 (2.36mm)	76.0	1.0	42.0	53.0
0000	#16 (1.18mm)	62.0	1.0	25.0	37.0
	#30 (0.6mm)	47.0	1.0	13.0	28.0
Duct	#50 (0.3mm)	26.0	1.0	9.0	21.0
1 most	#100 (0.15mm)	5.0	1.0	4.0	13.0
	#200 (0.075mm)	2.9	1.0	2.2	10.8
https://commons.und.edu/cgl/view.content.cgi?article=29938.context=theses	Pan	0.0	0.0	0.0	0.0

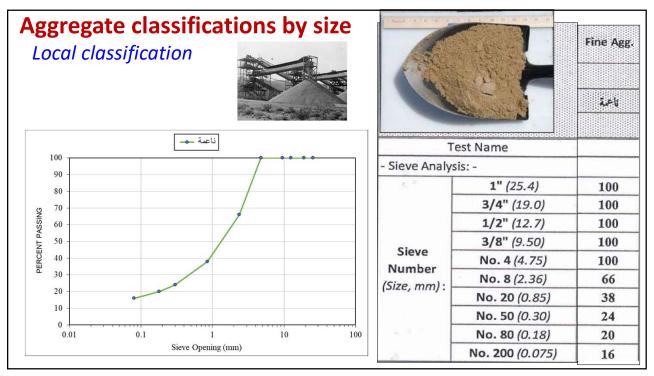
		N Fines	Rock	Washed Dust	Dirty Dust
A CARLES	Sieve Size	% Passing	% Passing	% Passing	% Passing
	5/8" (16mm)	100.0	100.0	100.0	100.0
	1/2" (12.5mm)	100.0	100.0	100.0	100.0
Diala	3/8" (9.5mm)	100.0	63.0	100.0	100.0
I)ITT	#4 (4.75mm)	90.0	2.0	81.0	81.0
1717	#8 (2.36mm)	76.0	1.0	42.0	53.0
5 11	#16 (1.18mm)	62.0	1.0	25.0	37.0
111 St	#30 (0.6mm)	47.0	1.0	13.0	28.0
line	#50 (0.3mm)	26.0	1.0	9.0	21.0
	#100 (0.15mm)	5.0	1.0	4.0	13.0
	#200 (0.075mm)	2.9	1.0	2.2	10.8
https://commons.und.edu/cgi/viewcontent.cg?article=2993&context=theses	Pan	0.0	0.0	0.0	0.0

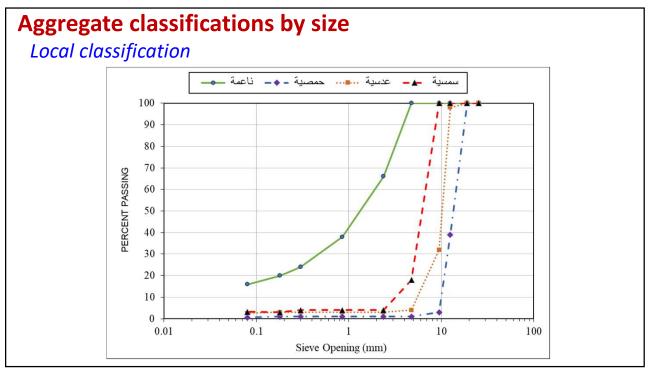


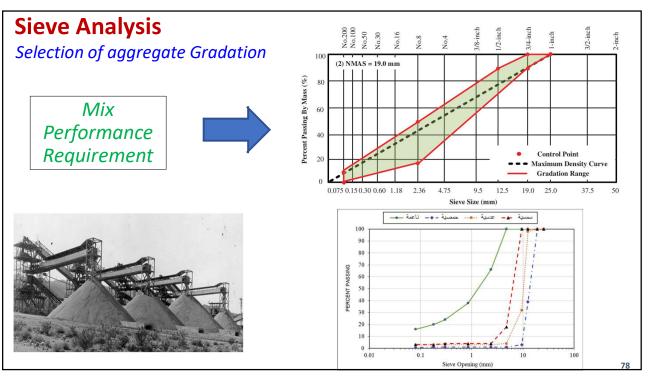

Aggregate classifications by size
Local classificationImage: Description
Image: Description<br/

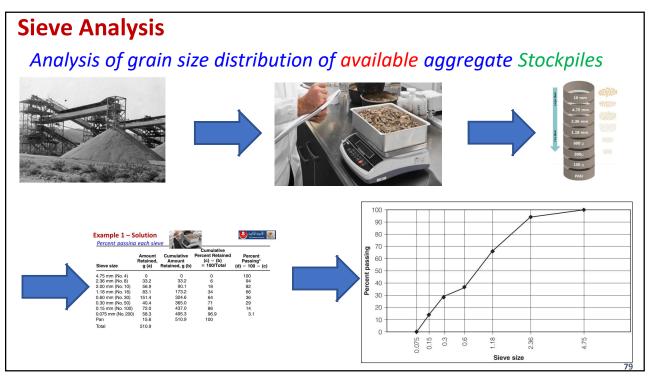
Aggregate cla	as		Coarse Agg,	Medium Agg,	Medium- Fine Agg.	Fine Agg			
Local	Aggregate Id	Aggregate Identification		Limestone Aggregate					
classification			i.or	عدية	بجسمية	i.eu			
				-يري	رکام -				
	Т	Test Name - Sieve Analysis: -		Test Result					
	- Sieve Analys			% Passing by Weight					
	1 ,	1" (25.4)	100	100	100	100			
		3/4" (19.0)	100	100	100	100			
	2 2 2 4 3 4 2 3 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4	1/2" (12.7)	39	98	100	100			
in the second	Classe	3/8" (9.50)	3	32	100	100			
	Sieve	No. 4 (4.75)	1	4	18	100			
	(Size, mm):	No. 8 (2.36)	1	3	4	66			
	(Jaze, min).	No. 20 (0.85)	1	3	4	38			
		No. 50 (0.30)	1	3	4	24			
	1.2	No. 80 (0.18)	1	3	3	20			
		No. 200 (0.075)	0.6	2.6	3.2	16			

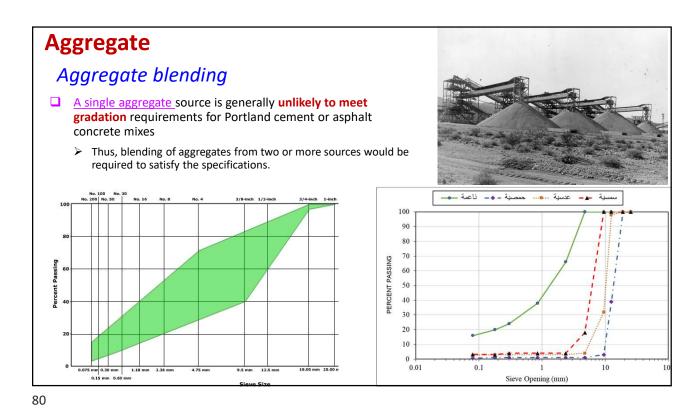

Aggregate classifications by size


Local classification




	Fine Agg.
	Aggregate
<u> </u>	بسية
	- 15





Key Principles of Aggregate Blending

- Blending Objective:
 - Achieve target gradation by combining materials from different stockpiles.
- Key Considerations:
 - Stockpile Properties: Individual gradations of each aggregate.
 - Blend Proportions: Percentage of each aggregate in the blend.
 - Specification Limits: Target gradation range for the final mix.

ROCK F	Nat Fines			Washel Dirtz Dust Dust		28 Aggregate Gradation			
		N Fines	Rock	Washed Dust	Dirty Dust	RAP Recycled Pavement	Blend Gradation	Lower Control Pt	Upper Control Pt
	Sieve Size	% Passing	% Passing	% Passing	% Passing	% Passing	% Passing	% Passing	% Passing
	5/8" (16mm)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
	1/2" (12.5mm)	100.0	100.0	100.0	100.0	98.0	99.6	90.0	100.0
	3/8" (9.5mm)	100.0	63.0	100.0	100.0	91.0	91.5		
	#4 (4.75mm)	90.0	2.0	81.0	81.0	74.0	66.2		
	#8 (2.36mm)	76.0	1.0	42.0	53.0	55.0	41.3	28.0	58.0
	#16 (1.18mm)	62.0	1.0	25.0	37.0	40.0	28.1		
	#30 (0.6mm)	47.0	1.0	13.0	28.0	29.0	18.5		
	#50 (0.3mm)	26.0	1.0	9.0	21.0	18.0	12.0		
	#100 (0.15mm)	5.0	1.0	4.0	13.0	12.0	6.0		
	#200 (0.075mm)	2.9	1.0	2.2	10.8	8.6	4.1	2.8	7.0
https://commons.und.edu/cgi/viewcontent.cgi?article=2993&context=theses	Pan	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Aggregate Blending

2. Mathematical (Algebraic) Method

• Overview:

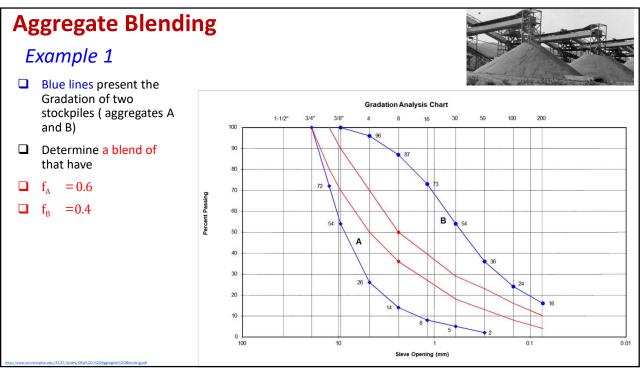
- A mathematical approach using algebraic formulas to compute the combined gradation of different stockpiles.
- Uses the **weighted average** of the percent passing values of each stockpile to calculate the final blend.

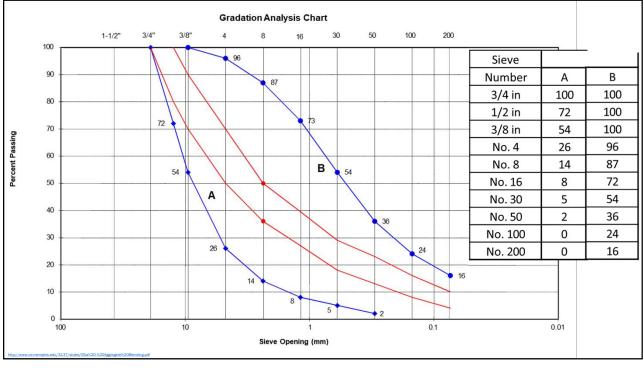
• Formula:

$$p_{_{\text{blend}}}^{i} = f_{A} p_{_{A}}^{i} + f_{B} p_{_{B}}^{i} + f_{C} p_{_{C}}^{i} + \dots$$

 p_{x}^{i} = percent of material x passing sieve i

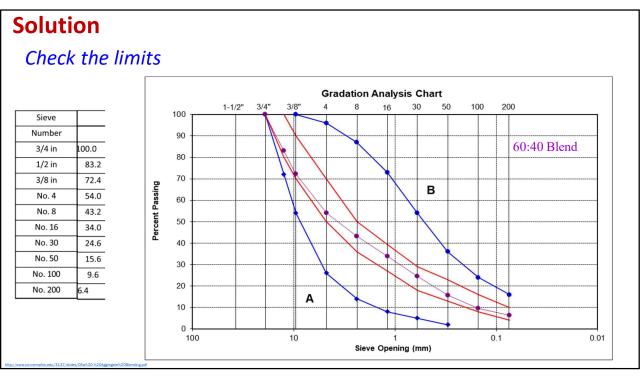
 f_x = fraction of blend contributed by stockpile x

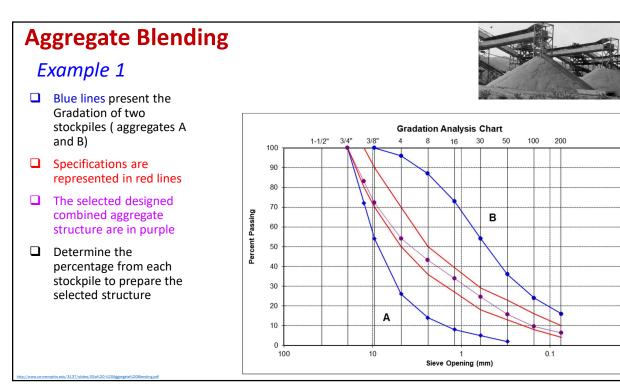

 $\sum f_x = 1$

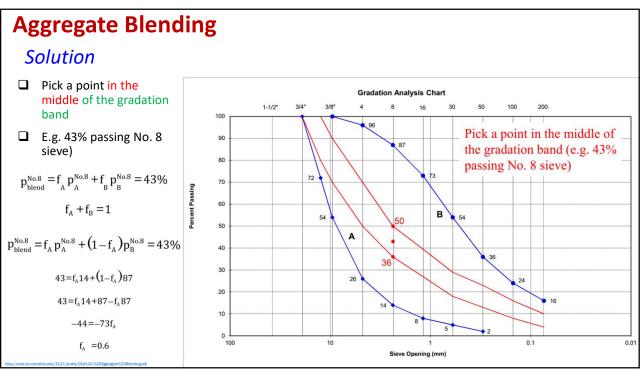

Aggregate Blending

2. Mathematical (Algebraic) Method

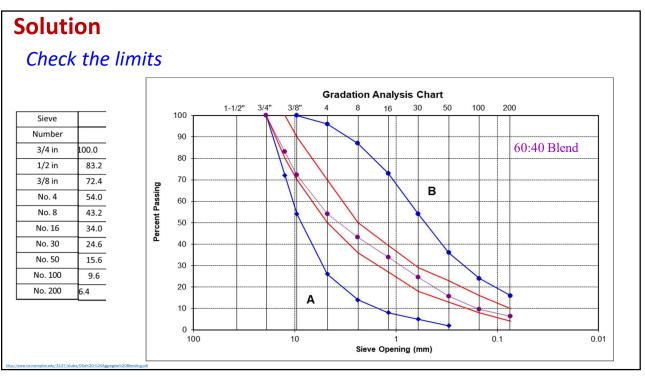
- Steps:
 - Obtain sieve analysis results for each stockpile.
 - Choose blending ratios for each stockpile (e.g., 50% A, 30% B, 20% C).
 - Apply the formula for each sieve size to compute the blended gradation.
 - Plot the blended gradation and compare with specification limits.

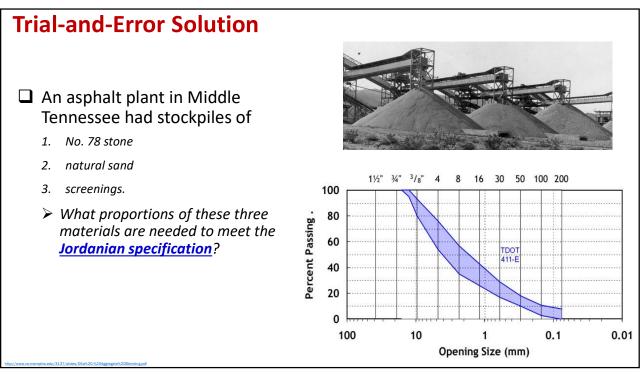


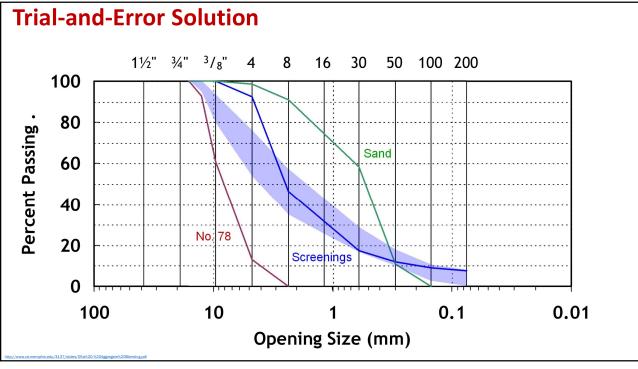


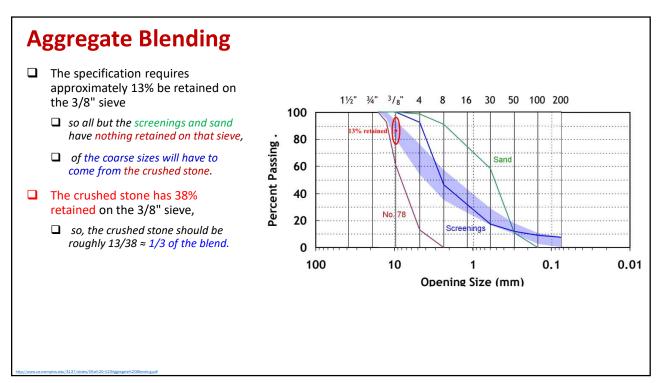

Solution				
How to app	ly the equa	ition	$\mathbf{p}_{_{\mathrm{blend}}}^{\mathrm{i}} = \mathbf{f}_{\mathrm{A}} \mathbf{p}_{_{\mathrm{A}}}^{\mathrm{i}} + \mathbf{f}_{_{\mathrm{B}}} \mathbf{p}_{_{\mathrm{B}}}^{\mathrm{i}}$	
$\Box f_{A} = 0.6$ $\Box f_{B} = 0.4$	Sieve		Percent Passing	
\Box f _B = 0.4	Number	А	Blend	В
	3/4 in	100		100
	1/2 in	72		100
	3/8 in	54		100
	No. 4	26		96
	No. 8	14		87
	No. 16	8		72
	No. 30	5		54
	No. 50	2		36
	No. 100	0		24
http://www.ce.memphis.edu/3137/slides/05a%20.%20Aggregate%20	No. 200	0		16

Solution					
How to app	ly the equa	ition	$\mathbf{p}_{_{\text{blend}}}^{1} = \mathbf{f}_{A} \mathbf{p}_{_{A}}^{i} + \mathbf{f}_{B} \mathbf{p}_{_{B}}^{i}$		
\Box f _A =0.6	Sieve		Percent Passing		
\Box f _B = 0.4	Number	А	Blend	В	
	3/4 in	100	0.6 (100) + 0.4 (100) = 100.0	100	
	1/2 in	72	0.6 (72) + 0.4 (100) = 83.2	100	
	3/8 in	54	0.6 (54) + 0.4 (100) = 72.4	100	
	No. 4	26	0.6 (26) + 0.4 (96) = 54.0	96	
	No. 8	14	0.6 (14) + 0.4 (87) = 43.2	87	
	No. 16	8	0.6 (8) + 0.4 (72) = 34.0	72	
	No. 30	5	0.6 (5) + 0.4 (54) = 24.6	54	
	No. 50	2	0.6 (2) + 0.4 (36) = 15.6	36	
	No. 100	0	0.6 (0) + 0.4 (24) = 9.6	24	
http://www.ce.memphis.edu/3137/slides/05s%20%20Aggregate%20	No. 200	0	0.6 (0) + 0.4 (16) = 6.4	16	




0.01


Solution							
Determine the fractions of the Blend $p_{\text{blend}}^{i} = f_{A} p_{A}^{i} + f_{B} p_{B}^{i}$							
$\Box f_{A} = 0.6$ $\Box f_{B} = 0.4$	Sieve		Percent Passing				
$\Box f_{\rm B} = 0.4$	Number	А	Blend	В			
	3/4 in	100		100			
	1/2 in	72		100			
	3/8 in	54		100			
	No. 4	26		96			
	No. 8	14		87			
	No. 16	8		72			
	No. 30	5		54			
	No. 50	2		36			
	No. 100	0		24			
http://www.ce.memphis.edu/3137/slides/05a%20-%20Aggregate%20	No. 200	0		16			


Solution					
How to app	ly the equa	ition	$\mathbf{p}_{_{\text{blend}}}^{\text{i}} = \mathbf{f}_{_{\text{A}}} \mathbf{p}_{_{\text{A}}}^{\text{i}} + \mathbf{f}_{_{\text{B}}} \mathbf{p}_{_{\text{B}}}^{\text{i}}$		
\Box f _A =0.6	Sieve		Percent Passing		
\Box f _B = 0.4	Number	А	Blend	В	
	3/4 in	100	0.6 (100) + 0.4 (100) = 100.0	100	
	1/2 in	72	0.6 (72) + 0.4 (100) = 83.2	100	
	3/8 in	54	0.6 (54) + 0.4 (100) = 72.4	100	
	No. 4	26	0.6 (26) + 0.4 (96) = 54.0	96	
	No. 8	14	0.6 (14) + 0.4 (87) = 43.2	87	
	No. 16	8	0.6 (8) + 0.4 (72) = 34.0	72	
	No. 30	5	0.6 (5) + 0.4 (54) = 24.6	54	
	No. 50	2	0.6 (2) + 0.4 (36) = 15.6	36	
	No. 100	0	0.6 (0) + 0.4 (24) = 9.6	24	
http://www.ce.memphis.edu/3137/slides/05s%20%20%20Aggregste%20	No. 200	0	0.6 (0) + 0.4 (16) = 6.4	16	

