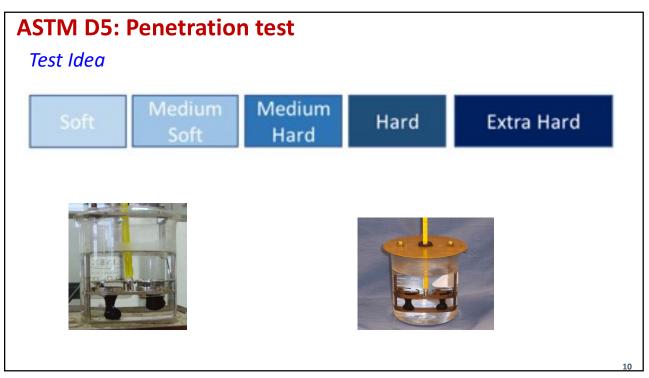
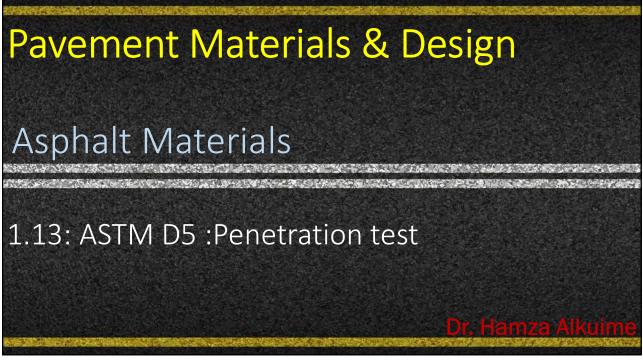

Softening point test

ASTM D36

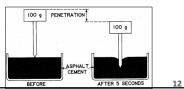

Gamma Softening point test is defined as


- The temperature at which material under standardized test conditions attains a specific consistency
- It is the temperature at which an asphalt cement <u>cannot</u> support the weight of a steel ball and starts flowing

Penetration test

ASTM D5 :Standard Test Method for Penetration of Bituminous Materials

Scope


> This test method covers determination of the penetration of semi-solid and solid bituminous materials

Penetration is defined as

Consistency of a bituminous material <u>expressed as</u> the distance in tenths of a millimeter that a standard needle vertically penetrates a sample of the material under known conditions of <u>loading, time, and</u> <u>temperature</u>

□ Significance and Use

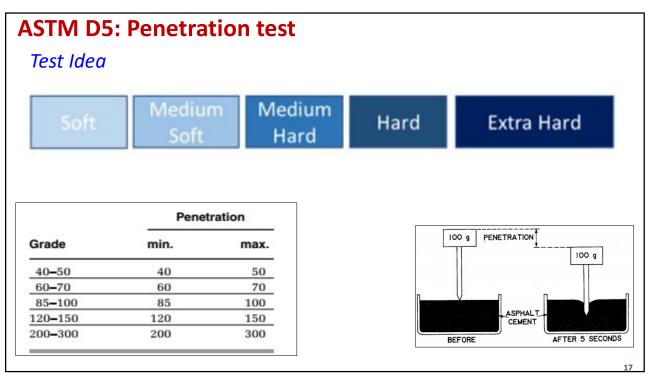
- > <u>The penetration test is used as a measure of consistency at intermediate service temperature</u>
- At <u>25 °C</u>, there is not simple method to measure the consistency of asphalt binder
 - This temperature a approximates the <u>average service temperature of the HMA pavements</u>
 - Thus, the penetration test is used to measure the consistency of asphalt binder at this temperature empirically
- Higher values of penetration indicate softer consistency.

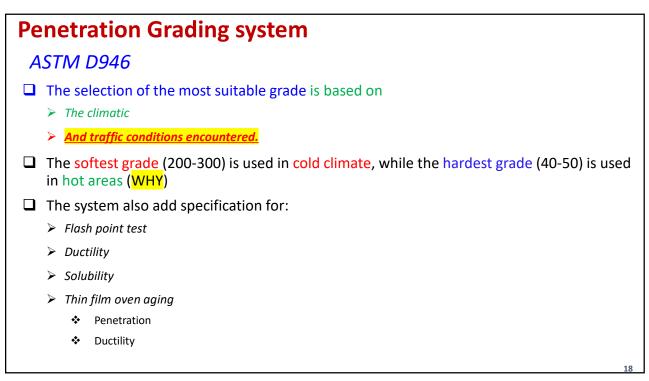
Penetration test ASTM D5 Penetration measurement > The standardized needle first touches the surface of the asphalt binder specimen and then is allowed to penetrate into the mass of the specimen under the influence of its own weight and an additional mass so that the total load is $100 \pm 0.1 \text{ g}$, for a period of 5 s. 100 g > After loading, the penetration depth of PENETRATION the needle is measured in 0.1 mm or 100 g decimillimetres (dmm). For example, if the needle penetrates 8 ٠ mm, the penetration of asphalt cement is 80 > This unit is also called 'pen' SPHALT 1 pen = 0.1 mm

CEMENT

BEFORE

AFTER 5 SECONDS


Penetration Grading system


ASTM D946

□ Binder are classified based on penetration test results

□ Five penetration grades are specified

	Penetration		
Grade	min.	max.	
40-50	40	50	
60-70	60	70	
85-100	85	100	
120-150	120	150	
200-300	200	300	

Requirements for Penetration Graded Asphalt Cement

ASTM D946

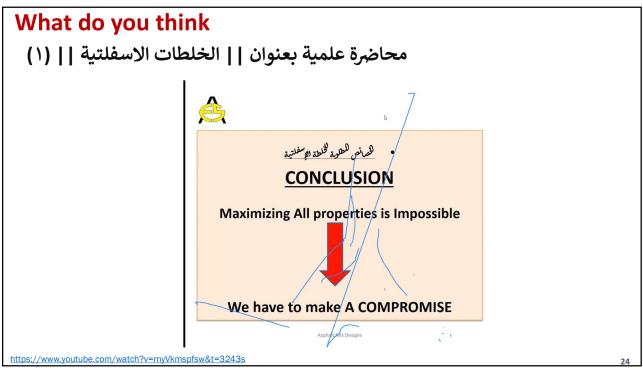
		Penetration Grade								
	40–50		60-7	60–70 85–1		100	120-	120-150		200-300
	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
Penetration at 25°C [77°F], 100 g, 5 s	40	50	60	70	85	100	120	150	200	300
Softening Point, °C [°F]	49 [120]		46 [115]		42 [108]		38 [100]		32 [90]	
Flash point, °C [°F], (Cleveland open cup)	230 [450]		230 [450]		230 [450]		220 [425]		175 [350]	
Ductility at 25°C [77°F], 5 cm/min, cm	100		100		100		100		100 ^A	
Solubility in trichloroethylene, %	99.0		99.0		99.0		99.0		99.0	
Retained penetration after thin-film oven test, %	55 +		52 +		47 +		42 +		37 +	
Ductility at 25°C [77°F], 5 cm/min, cm after thin-film oven test test			50		75		100		100 ^A	

Aff ductility at 25°C [77°F] is less than 100 cm, material will be accepted if ductility at 15°C [60°F] is 100 cm minimum at the pull rate of 5 cm/min.

JORDAN PETROLEUM REFINERY CO. LTD

Specifications of Asphalt 60-70

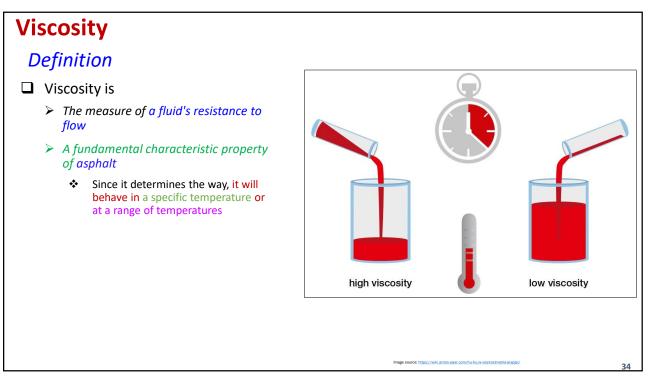
S.N	Characteristics		Test Method	Control Limits		
1	Ductility @ 25 °C, 5cm / min.	ASTM D113	Min. 100			
2	Flash Point	°C	ASTM D92	Min. 232		
3	Penetration @ 25 °C, 100g, 5 sec.	0.1 mm	ASTM D5	60 - 70		
4	Solubility in Trichloroethylene Mass %		ASTM D2042	Min. 99.0		
5	Performance after Thin-film Oven Test_ ASTM D1754					
5.1	Retained Penetration.	%	ASTM D5	Min. 52+		
5.2	Ductility at 25°C, 5 cm/min.	cm	ASTM D113	Min. 50		

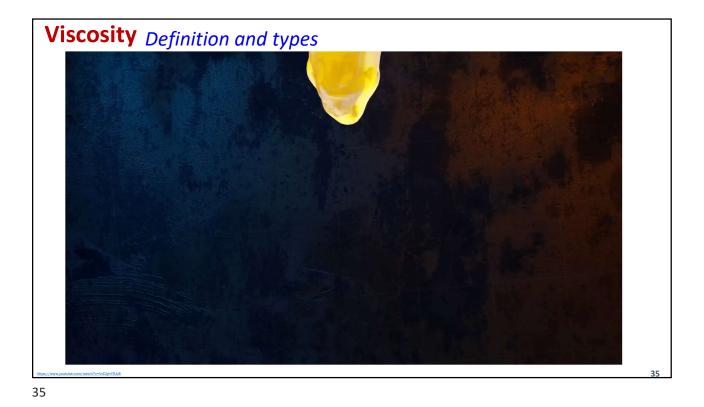

21

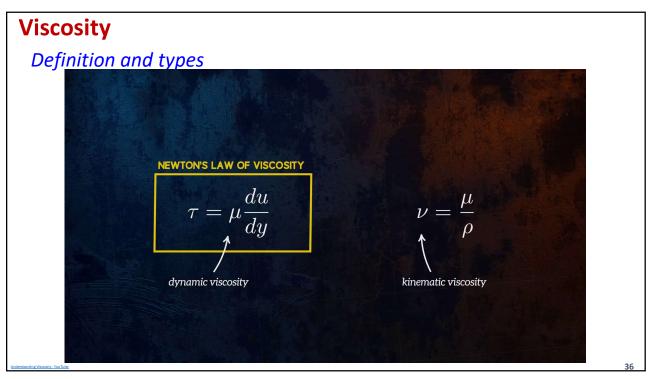
JORDAN PETROLEUM REFINERY CO. LTD

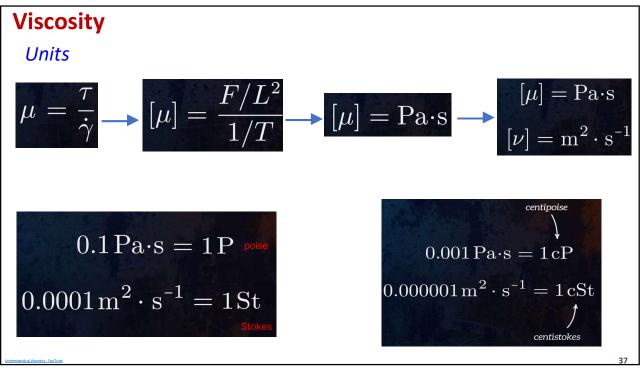
Specifications of Asphalt 85-100

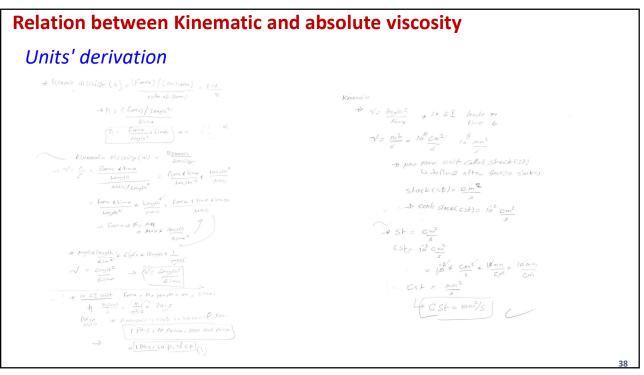
.N	Characteristics		Test Method	Control Limits
1	Ductility @ 25 °C, 5cm / min.	cm	ASTM D-113	Min. 100
2	Penetration @ 25 °C, 100g, 5sec.	0.1 mm	ASTM D-5	85 - 100
3	Softening point	°c	ASTM D-36	Min. 42
4	Solubility in Trichloroethylene	Mass %	ASTM D-2042	Min. 99



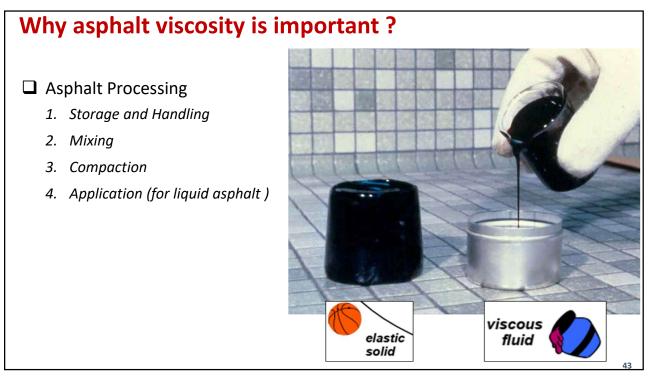





Asphalt Consistency

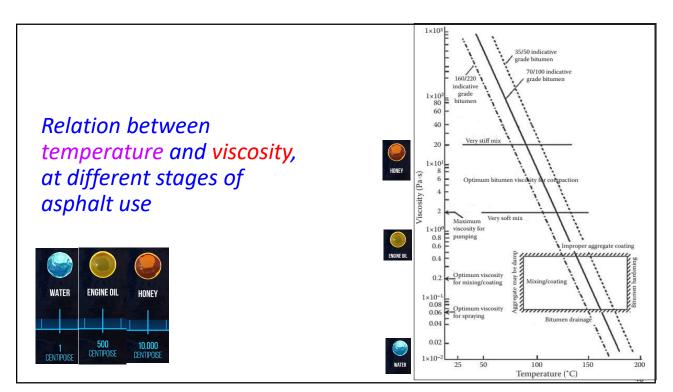

Viscosity definition and type

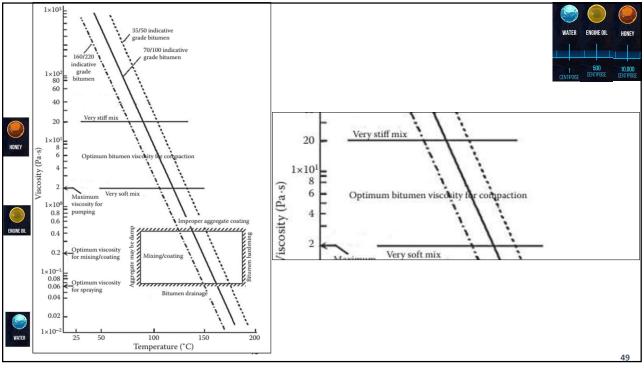




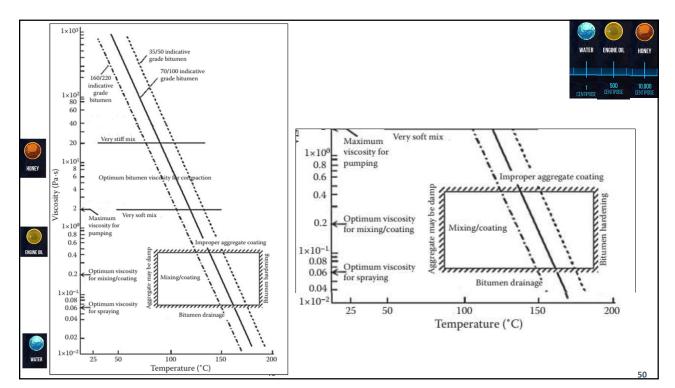
What do you think?

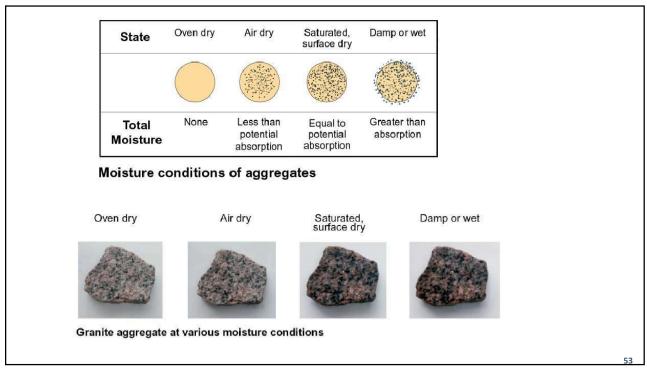
Why asphalt viscosity is important ?

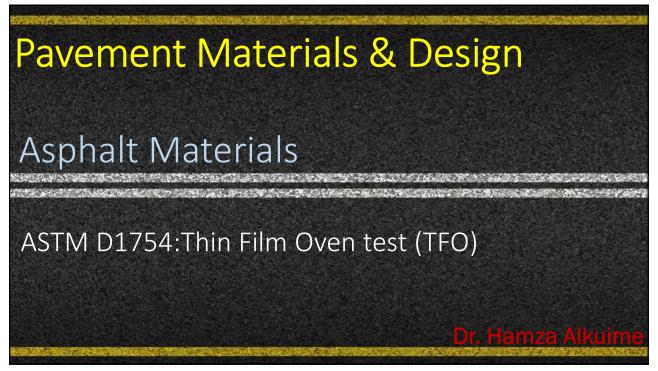

<section-header><section-header><text><image>

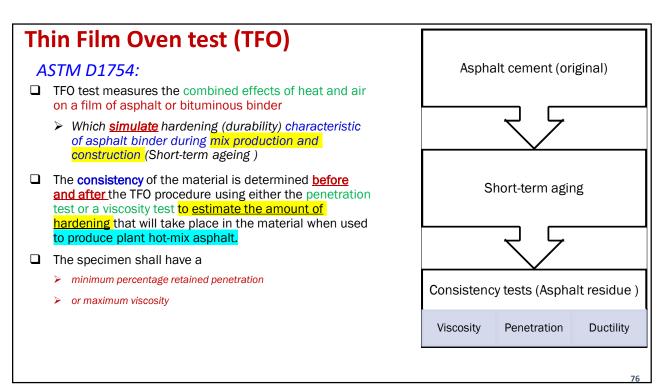


Conventional flexible pavement layers

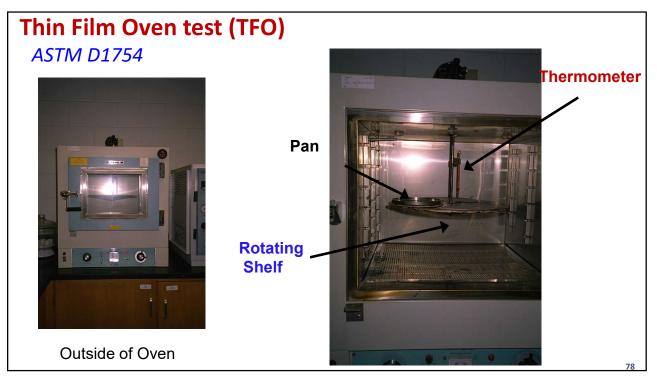

Application (for liquid asphalt) + Mix Compaction



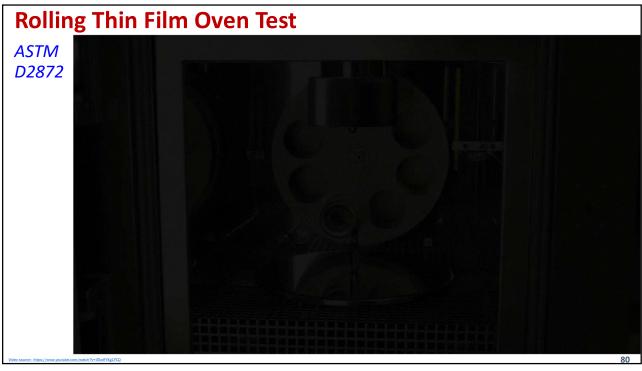



Viscosity Grading system based on original asphalt cement (AC system)

ASTM D3381


- □ This specification covers asphalt cements graded by viscosity of original sphalt cement at 60 °C for use in pavement construction.
- □ Six penetration grades are specified

Grade	Dynamic Viscosity, 60°C, Pas
AC-2.5	25 ± 5
AC-5	50 ± 10
AC-10	100 ± 20
AC-20	200 ± 40
AC-30	300 ± 60
AC-40	400 ± 80



Laboratory tests and properties of asphalt Consistency tests Purity tests ✤ Absolute (dynamic) viscosity (ASTM D2171, D4402) Kinematic viscosity (ASTM D445 and D2170) Penetration test (ASTM D5) Safety tests Softening point (ASTM D36) Ductility test (ASTM D113) Other tests Durability tests Thin Film Oven test (ASTM D 1754) Rolling Thin Film Oven Test (ASTM D 2872) Distillation of Cutback Asphalt (ASTM D402) Loss on heating (ASTM D6)

- Solubility in Trichloroethylene (ASTM D2042)
- Presence of water (ASTM D95)
- Water content (ASTM D95)
- Flash and fire point test (ASTM D1310)
- Specific Gravity (S.G) (ASTM D70)

Laboratory tests and properties of asphalt

Consistency tests

- Absolute (dynamic) viscosity (ASTM D2171, D4402)
- Kinematic viscosity (ASTM D445 and D2170)
- Penetration test (ASTM D5)
- Softening point (ASTM D36)
- Ductility test (ASTM D113)

Durability tests

- Thin Film Oven test (ASTM D 1754)
- Rolling Thin Film Oven Test (ASTM D 2872)
- Distillation of Cutback Asphalt (ASTM D402)
- Loss on heating (ASTM D6)

Purity tests

- Solubility in Trichloroethylene (ASTM D2042)
- Presence of water (ASTM D95)
- ✤ Water content (ASTM D95)

□ Safety tests

Flash and fire point test (ASTM D1310)

Other tests

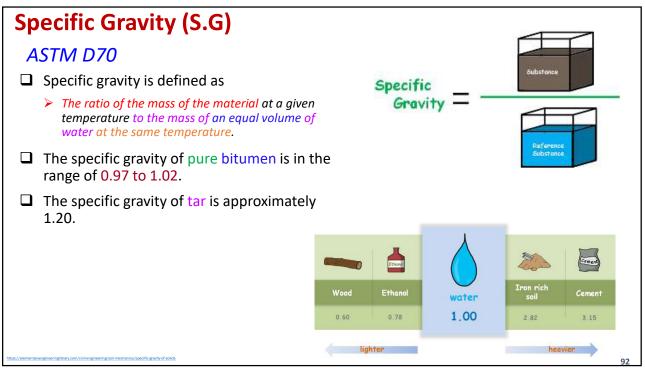
Specific Gravity (S.G) (ASTM D70)

Flash and fire point test
ASTM D1310
ASTM D1310
Standard Test Method for Flash and Fire Points by Cleveland Open Cup Tester
□ Scope
This test method describes the determination of the flash point and fire point of petroleum products by a manual Cleveland open cup apparatus or an automated Cleveland open cup apparatus.
Flash point is defined as
The lowest temperature corrected to a barometric pressure of 101.3 kPa <u>at which application of an ignition source</u> causes the vapors of a specimen of the sample to ignite under specified conditions of test
Fire point is defined as
The lowest temperature corrected to a barometric pressure of 101.3 kPa at <u>which application of an ignition source causes the vapors of a test specimen of the sample to ignite and sustain burning for a minimum of 5 seconds under specified conditions of test.</u>

Specific Gravity (S.G)

ASTM D70

ASTM D70

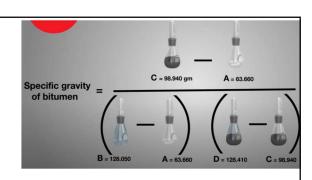

Standard Test Method for Density of Semi-Solid Bituminous Materials (Pycnometer Method

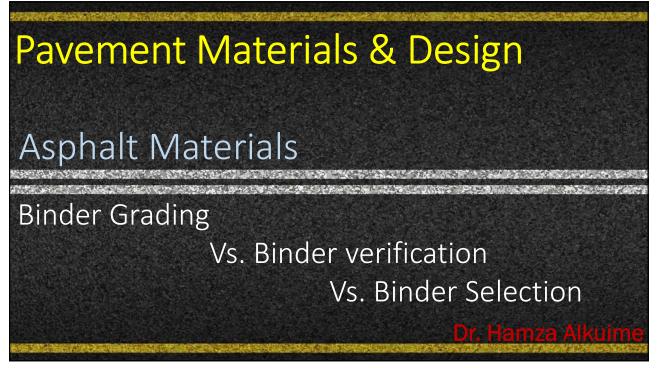
□ Scope

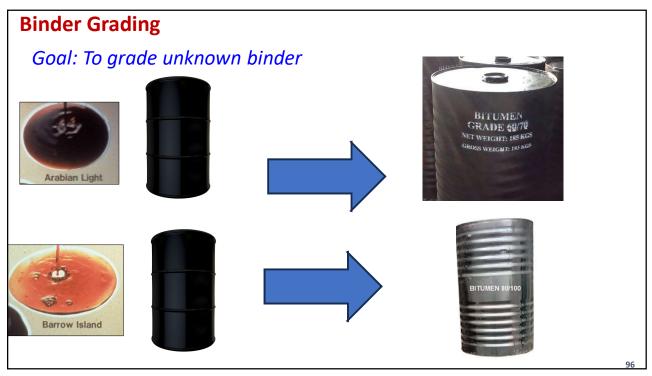
This test method covers the determination of the relative density and density of semisolid bituminous materials, asphalt cements, and soft tar pitches by use of a pycnometer

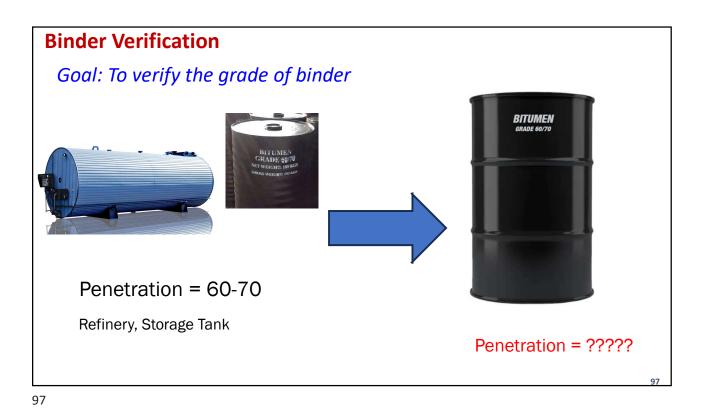
□ Significance and Use

- The asphalt cement expands on heating, therefore, a specific gravity determination is useful for
 - Making temperature-volume corrections
 - Determining the weight per unit volume of asphalt cement heated to its application temperature.


Specific Gravity (S.G)


ASTM D70


□ Calculate the S.G. as indicated in the following equ:


>
$$S.G = \frac{(C-A)}{[(B-A) - (D-C)]}$$

- Where
 - A = mass of pycnometer (plus stopper),
 - B = mass of pycnometer filled with water,
 - C = mass of pycnometer partially filled with asphalt
 - D = mass of pycnometer plus asphalt plus water.
- \blacktriangleright Density = S.G $\times \gamma_w$, Where
 - γ_w = density of water at the test temperature (At 25°C, γ_w = 997.0 kg/m³)
- □ The results reported the S.G at a given temperature for both asphalt and water
 - ➢ For example, S.G of 1.02 at 15.6 ℃/15.6 ℃
 - Means that the asphalt cement specific gravity is 1.02 when both the asphalt and water has temperature of 15.6 °C

 Since Select satisfies binder for specific project
 Image: Comparison of the specific project

 Image: Comparison of the specific project
 Image: Comparison of the specific project

 Image: Comparison of the specific project
 Image: Comparison of the specific project

 Image: Comparison of the specific project
 Image: Comparison of the specific project

 Image: Comparison of the specific project
 Image: Comparison of the specific project

 Image: Comparison of the specific project
 Image: Comparison of the specific project

 Image: Comparison of the specific project
 Image: Comparison of the specific project

 Image: Comparison of the specific project
 Image: Comparison of the specific project

 Image: Comparison of the specific project
 Image: Comparison of the specific project

 Image: Comparison of the specific project
 Image: Comparison of the specific project

 Image: Comparison of the specific project
 Image: Comparison of the specific project

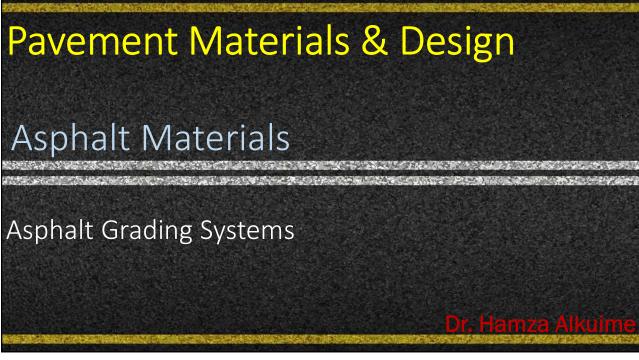

 Image: Comparison of the specific project
 Image: Comparison of the specific project

 Image: Comparison of the specific project
 Image: Comparison of the specific project

 Image: Comparison of the specific project
 Image: Comparison of the specific project

 Image: Comparison of the specific project
 Image: Comparison of the specific project

 Image: Comp

Asphalt binder grading systems

Available systems

- Grading By Chewing
- □ Penetration Grading system (ASTM D946)
- □ Viscosity Grading system based on original asphalt cement (AC system)
- Uscosity Grading system based on aged asphalt cement (AR system)
- □ Superpave Performance Grade (PG) system (AASHTO M320)
- □ (PG) plus tests

Penetration Grading system

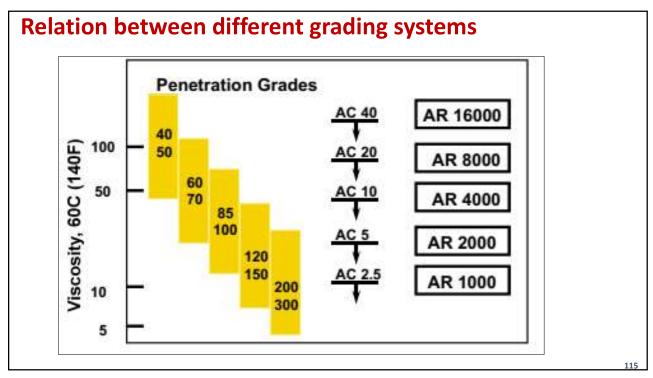
ASTM D946

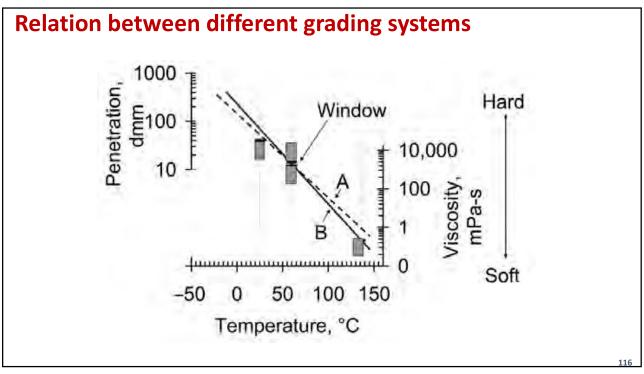
- □ Binder are classified based on penetration test results
- □ Five penetration grades are specified

	Penetration			
Grade	min.	max		
40-50	40	50		
60-70	60	70		
85-100	85	100		
120-150	120	150		
200-300	200	300		

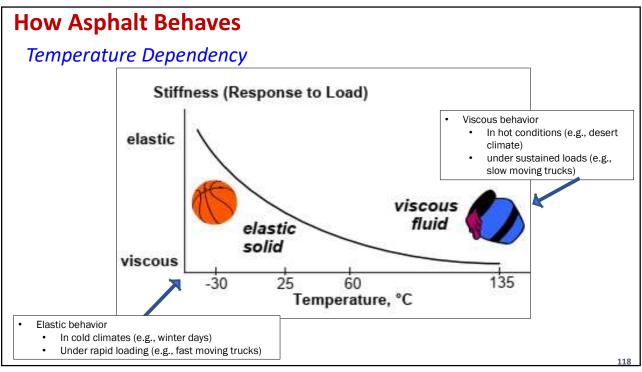
101

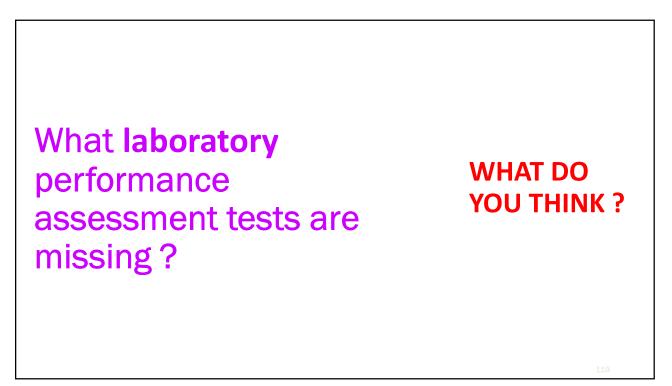
Viscosity Grading system based on original asphalt cement (AC system)

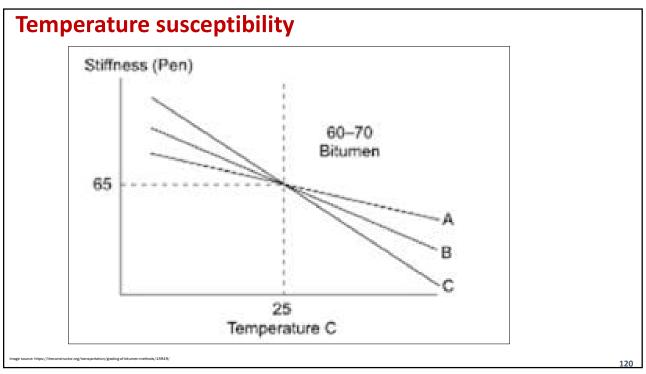

ASTM D3381

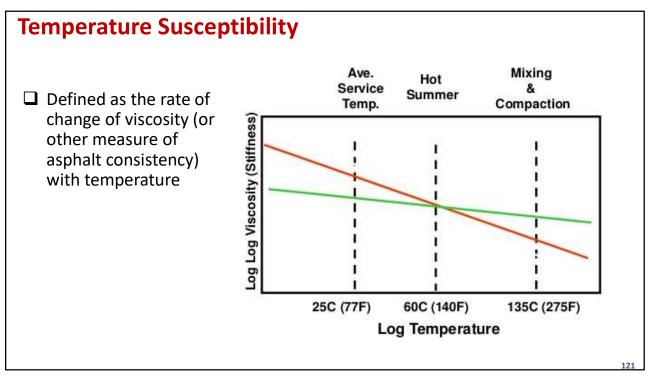

□ This specification covers asphalt cements graded by viscosity of original sphalt cement at 60 °C for use in pavement construction.

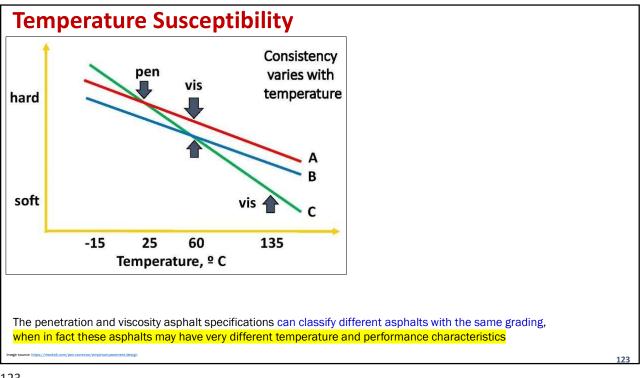
□ Six penetration grades are specified

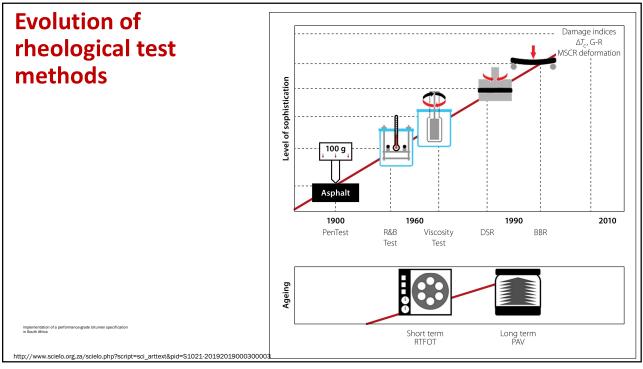

Grade	Viscosity, 60°C , Pas
AC-2.5	25 ± 5
AC-5	50 ± 10
AC-10	100 ± 20
AC-20	200 ± 40
AC-30	300 ± 60
AC-40	400 ± 80

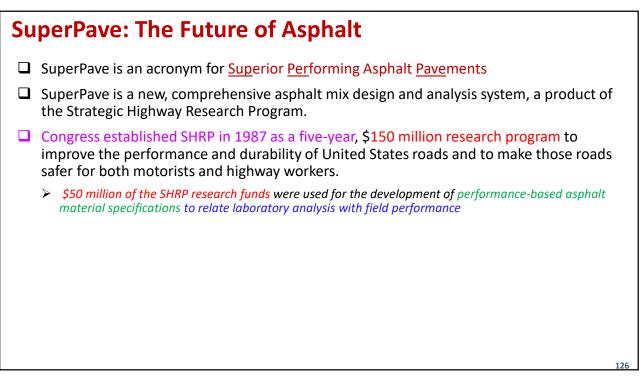

Viscosity Grading system based (cement (AR system) ASTM D3381		·				
This specification covers asphalt ceme cement at 60 °C for use in pavement of						
Tests are performed on Residue from Rolling Thin-Film Oven						
Six penetration grades are specified	Grade	Viscosity, 60°C, Pas				
	AR-1000	100 ± 25				
	AR-2000	200 ± 50				
	AR-4000	400 ± 100				
	AR-8000	200 ± 40				
	AR-16000	1600 ± 400				
	·	111				

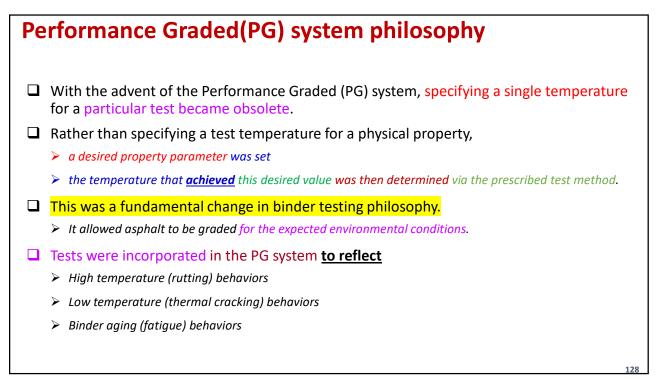


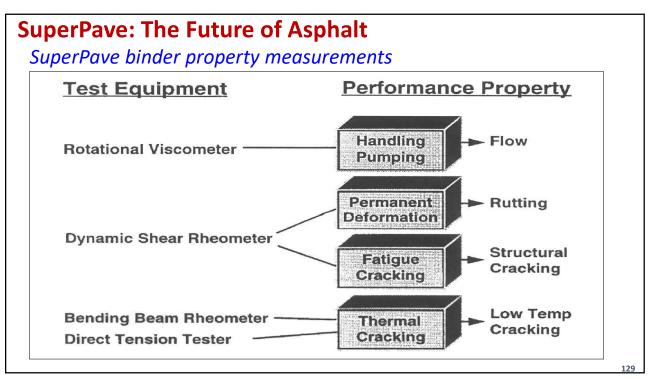


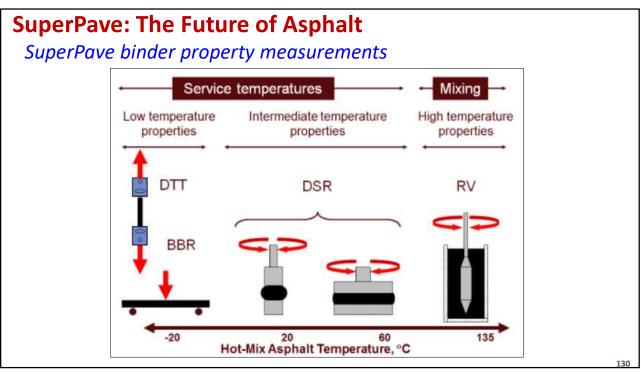


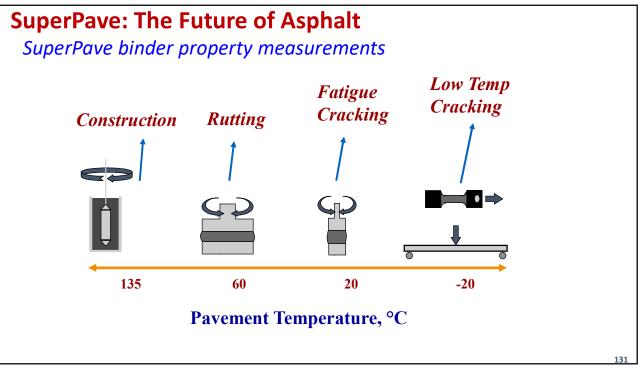


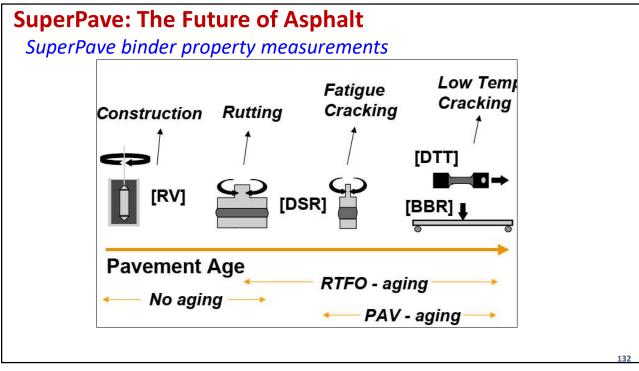


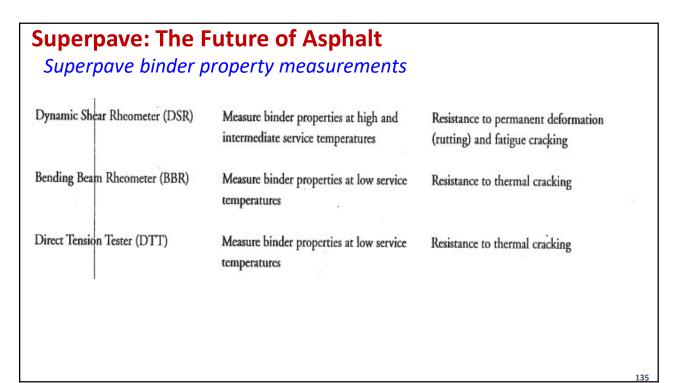


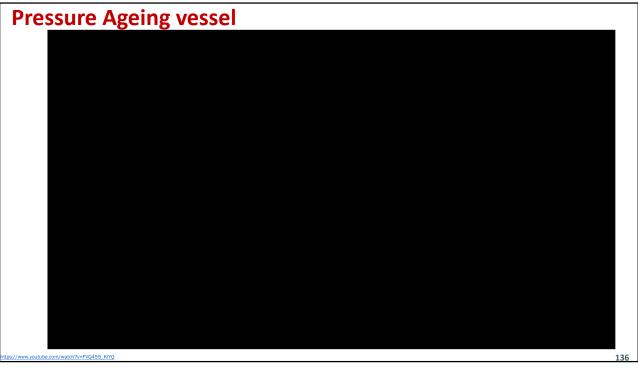






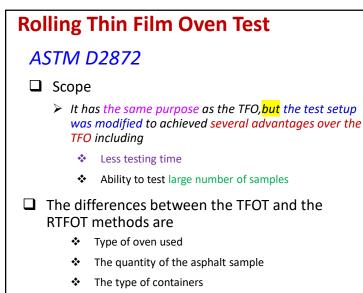


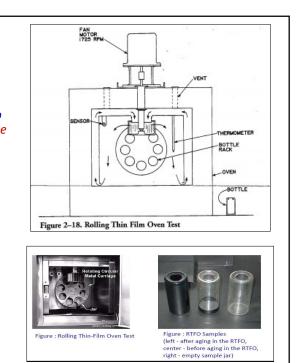


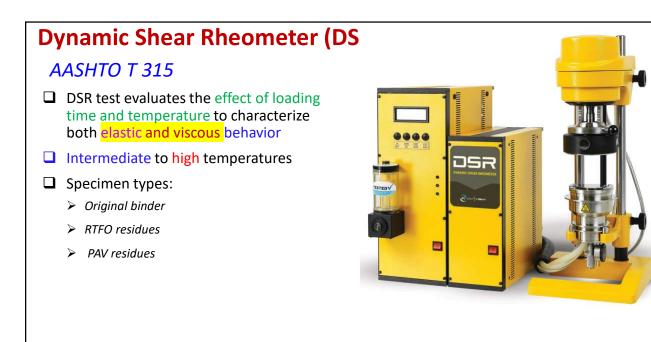

k	Equipment	Purpose	Performance Parameter
u	Rolling Thin Film Oven (RTFO)	Simulate binder aging (hardening) during HMA production and construction	Resistance to aging (durability) during construction
	Pressure Aging Vessel (PAV)	Simulate binder aging (hardening) during HMA service life	Resistance to aging (durability) during service life
	Rotational Viscometer (RV)	Measure binder properties at high con- struction temperatures	Handling and pumping
	Dynamic Shear Rheometer (DSR)	Measure binder properties at high and intermediate service temperatures	Resistance to permanent deformation (rutting) and fatigue cracking
	Bending Beam Rheometer (BBR)	Measure binder properties at low service temperatures	Resistance to thermal cracking
	Direct Tension Tester (DTT)	Measure binder properties at low service temperatures	Resistance to thermal cracking

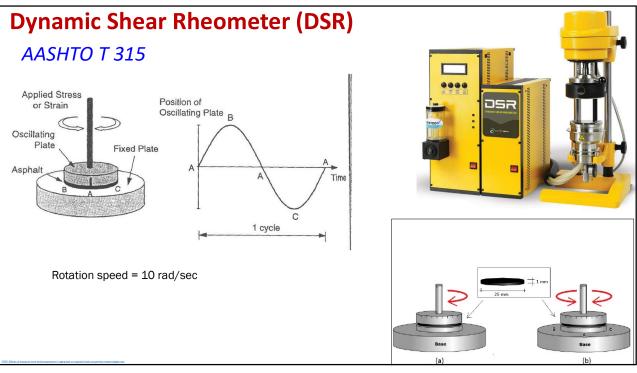
Superpave: The Future of Asphalt

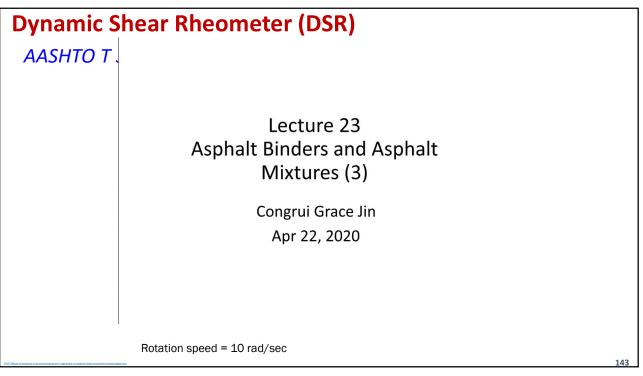
Superpave binder property measurements

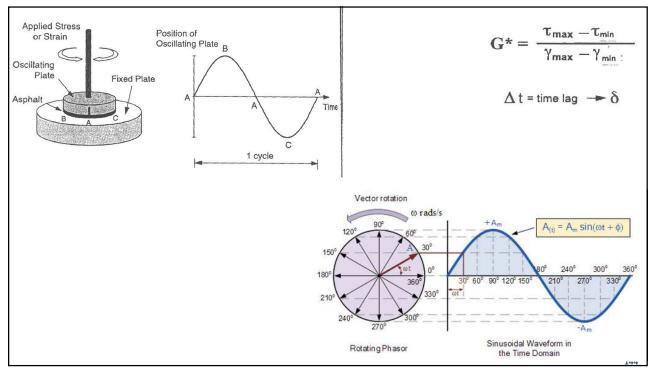

Equipment	Purpose	Performance Parameter
Rolling Thin Film Oven (RTFO)	Simulate binder aging (hardening) during HMA production and construction	Resistance to aging (durability) during construction
Pressure Aging Vessel (PAV)	Simulate binder aging (hardening) during HMA service life	Resistance to aging (durability) during service life
Rotational Viscometer (RV)	Measure binder properties at high con- struction temperatures	Handling and pumping

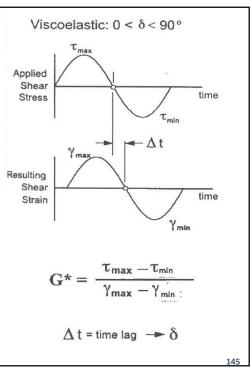


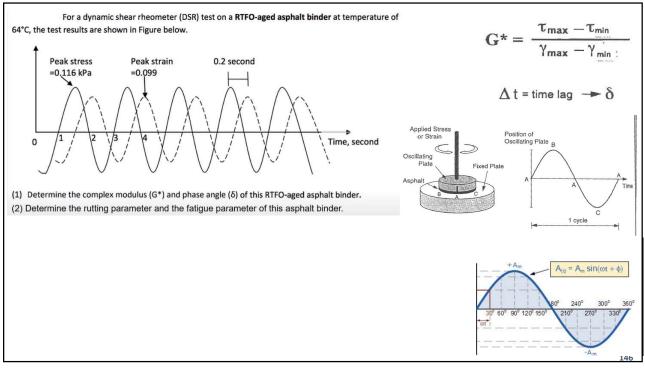

Rotational viscosity ASTM D4402 Used to determine the flow characteristics of the asphalt binder To ensure that the asphalt is fluid enough to be pumped and handled at the hot mix facility Measured on the original asphalt binder Test temperature at 135 C Maximum viscosity 3 Pa.s

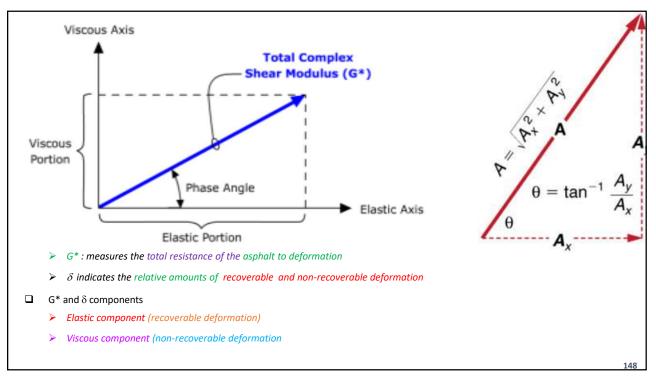


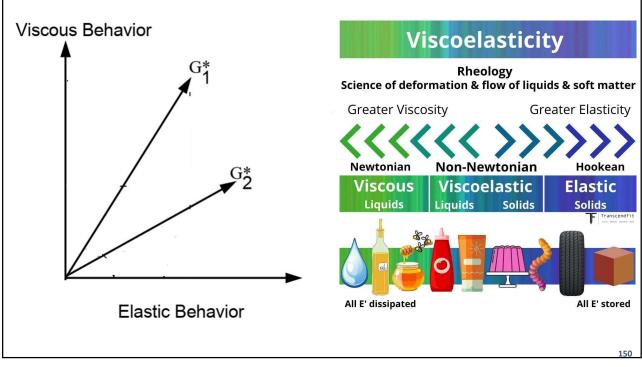

 The duration of rotation and the absence of applying airflow on the samples

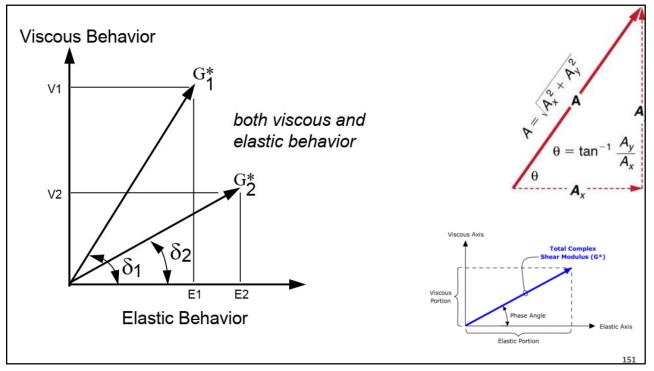









Dynamic Shear Rheometer (DSR) AASHTO T 315 The DSR measures a specimen's complex shear modulus (G*) and phase angle (δ). The complex shear modulus (G*) can be considered the sample's total resistance to deformation when repeatedly sheared while the phase angle (δ), is the lag between the applied shear stress and the resulting shear strain. The larger the phase angle (δ), the more viscous the material.


- indicates the relative amounts of recoverable and nonrecoverable deformation
- **D** Phase angle (δ) limiting values are:
 - > Purely elastic material: $\delta = 0$ degrees
 - Purely viscous material: δ = 90 degrees

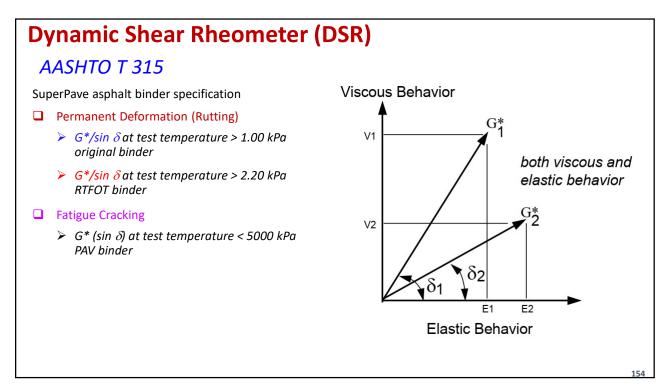
Dynamic Shear Rheometer (DSR)

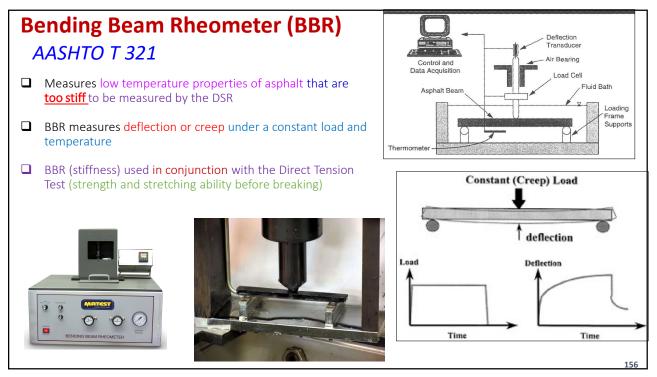
AASHTO T 315

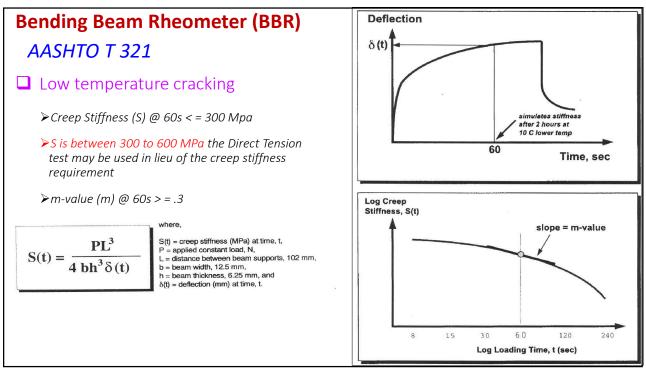
Rutting Parameter: $|G^*|/sin\delta$

Rutting is basically a cyclic loading phenomenon. To minimize rutting, the amount of work dissipated per loading cycle should be minimized. The work dissipated per loading cycle at a constant stress can be expressed as:

$$W_{\varepsilon} = \pi \sigma_0^2 \left[\frac{1}{\frac{G^*}{\sin \delta}} \right] \qquad \wp$$


To minimize the work dissipated per loading cycle, the parameter $|G^*|/\sin\delta$ should be maximized. Therefore, minimum values for the rutting parameter are specified in the performance grading system.

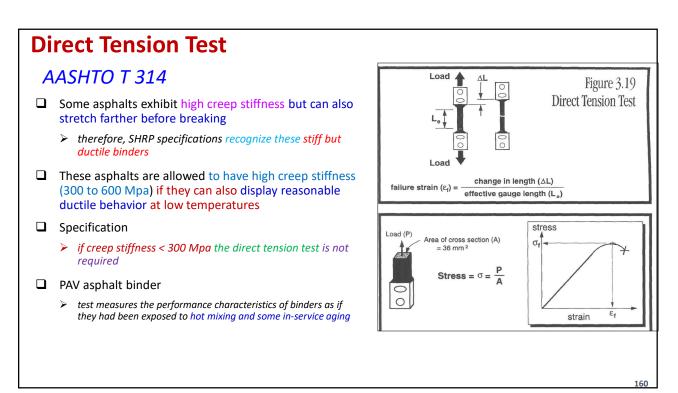

Permanent Deformation (Rutting)


- G*/sin δ at test temperature > 1.00 kPa original binder
- G*/sin δ at test temperature > 2.20 kPa RTFOT binder

152

<section-header><section-header><section-header><text><text><text><equation-block><equation-block><equation-block>

Direct Tension Test


AASHTO T 314

- Strong relationship between stiffness of asphalt binders and the amount of stretching they undergo before breaking
- Ductile Asphalts
 - > Asphalts that undergo considerable stretching before failure

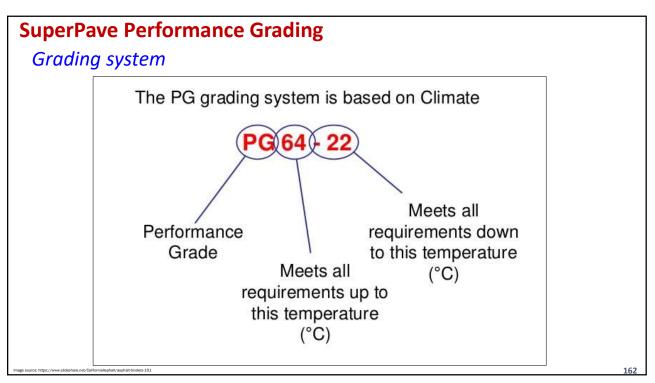
Brittle Asphalts

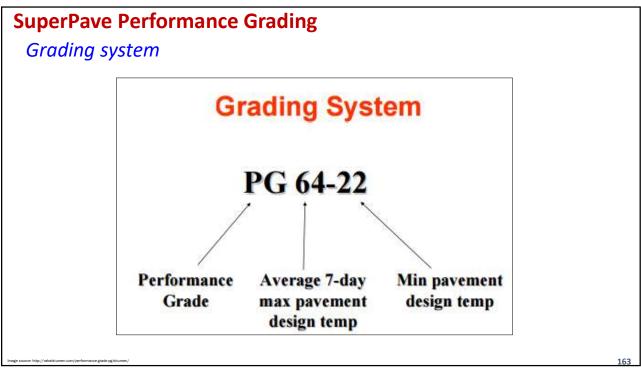
- > Asphalts those that break without much stretching
- Typically,
 - > Stiffer asphalts are more brittle
 - > Softer asphalts more ductile
- □ It is important that asphalts be capable of a minimal amount of elongation
- Creep stiffness as measured by the BBR is not adequate enough to completely characterize the capacity of asphalts to stretch before breaking

159

Direct Tesion Teste

Sample


Sample Bath


Superpave: The Future of Asphalt

Superpave binder property measurements

 Table 5.5
 Summary of the Superpave Test and Requirements

	Construction		t Deformation utting)	Fatigue Cracking	Low-Temperature	Cracking
Test	RV	DSR	DSR	DSR	BBR	DT
Aging Condition	None	None	RTFO	RTFO + PAV	RTFO + PAV	
Test Temperature	135°C	Seven-day average maximum pavement temperature	Seven-day average maximum pavement temperature	$0.5 \times$ (seven- day average maximum pavement temperature + minimum pavement temperature) + 4	Minimum Pavement Temperature + 10°C	Minimum Pavement Temperature + 10°C
(Example: For PG 64–22)		(64°C)	(64°C)	(25 °C)	(-12 °C)	(–12 °C)
Parameter	Viscosity	$ G^* /\sin\delta$	G* /sinδ	$ G^* \times \sin \delta$	$\begin{array}{cc} S \left(t = 60 & m \left(t = 60 \\ sec \right) & sec \end{array} \right)$	ε _f
Requirement	\leq 3 Pas	(≥ 1.0 kPa)	(≥ 2.2 kPa)	(≤ 5000 kPa)	\leq 300 MPa \geq 0.3	$\geq 1.0\%$

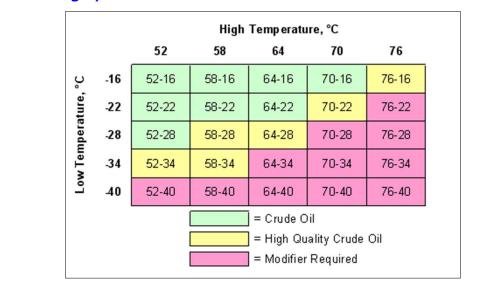




TABLE 9.2 Bind Specifications	er Grades in the Performance Grade
High Temperature Grades (°C)	Low Temperature Grades (°C)
PG 46	-34, -40, -46
PG 52	-10, -16, -22, -28, -34, -40, -40
PG 58	-16, -22, -28, -34, -40
PG 64	-10, -16, -22, -28, -34, -40
PG 70	-10, -16, -22, -28, -34, -40
PG 76	-10, -16, -22, -28, -34
PG 82	-10, -16, -22, -28, -34

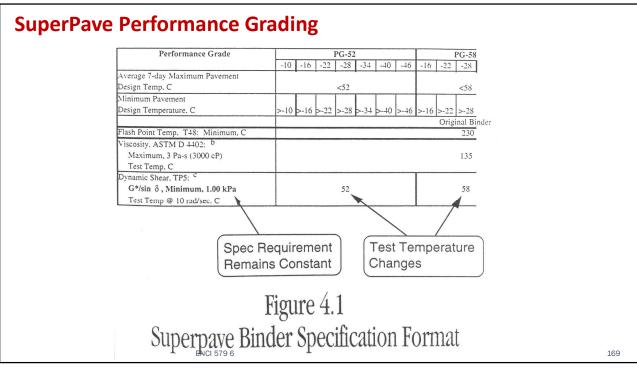
SuperPave Performance Grading

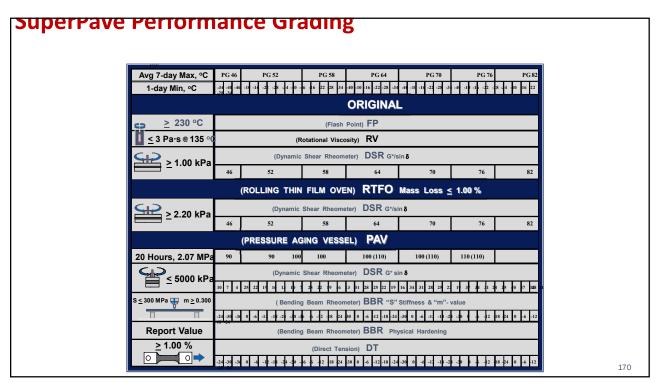
Grading system

Penetration Grading system

ASTM D946

- □ Binder are classified based on penetration test results
- □ Five penetration grades are specified


	Pene	tration
Grade	min.	max.
40-50	40	50
60-70	60	70
85-100	85	100
120-150	120	150
200-300	200	300


167

Superpave: The Future of Asphalt

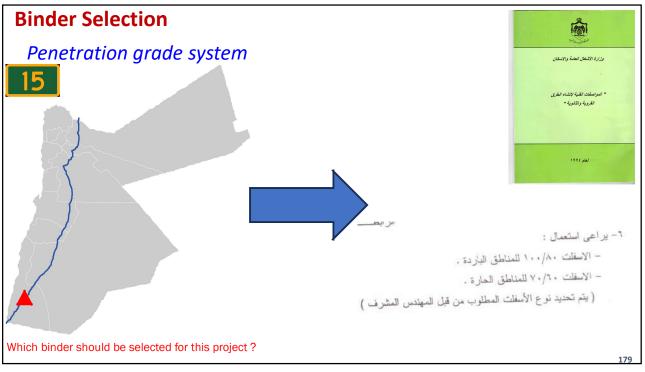
Superpave	binder	property	measurements
-----------	--------	----------	--------------

 Table 5.5
 Summary of the Superpave Test and Requirements
 Construction **Permanent Deformation** Fatigue (Rutting) Cracking Low-Temperature Cracking RV DSR DSR DSR BBR DT Test Aging Condition None **RTFO** RTFO + PAV RTFO + PAV None 135°C Minimum Pavement Test Seven-day Seven-day $0.5 \times (seven-$ Minimum Temperature day average Temperature + 10°C Pavement average average Temperature + 10°C maximum maximum maximum pavement pavement pavement temperature temperature temperature + minimum pavement temperature) + 4 (64°C) (64°C) (-12 °C) (-12 °C) (Example: For (25 °C) PG 64-22) Parameter Viscosity $|G^*|/\sin\delta$ $|G^*|/\sin\delta$ $|G^*| \times \sin \delta$ $S(t = 60 m(t = 60 \varepsilon_f)$ sec) sec) \leq 300 MPa \geq 0.3 Requirement \leq 3 Pas $(\geq 1.0 \ kPa)$ $(\geq 2.2 \text{ kPa})$ (≤ 5000 kPa) $\geq 1.0\%$

24		PG 46	2				PG 52				PG 58					PG 64					
Performance Grade	34	40	46	10	16	22	28	34	40	46	16	22	28	34	40	10	16	22	28	34	40
Average 7-day max pavement design temp, ${}^{\circ}C^{a}$		<46					<52						<58					<	64		
Min pavement design temperature, °C ^a	>- 34	>- 40	>- 46	>- 10	>- 16	>- 22	>- 28	>- 34	>- 40	>- 46	>- 16	> 22	>- 28	>- 34	>- 40	>- 10 >- 16 >- 22 >- 28 >- 34				>- 4	
								Orig	inal Bin	der											
Flash point temp, T 48, min °C											230										
Viscosity, T 316: ^b max 3 Pa·s, test temp, °C											135										
Dynamic shear, T 315: ^c G*/sinô, ^d min 1.00 kPa test temp @ 10 rad/s, °C		46					52						58					6	4		
						R	olling T	hin-Filn	Oven	Residue	(T 240)										
Mass change, e max, percent											1.00)									
Dynamic shear, T 315: G*/sin∂, ^d min 2.20 kPa test temp @ 10 rad/s, °C		46					52						58					6	4		
						Pi	ressurize	d Aging	g Vessel	Residu	e (R 28)										
PAV aging temperature, °C ¹		90	2				90					94. T	100					10	00		
Dynamic shear, T 315: G* sinô, ^d max 5000 kPa test temp @ 10 rad/s, °C	10	7	4	25	22	19	16	13	10	7	25	22	19	16	13	31	28	25	22	19	1
Creep stiffness, T 313: ^g	-			-		<u> </u>															
S, max 300 MPa <i>m</i> -value, min 0.300 test temp @ 60 s, °C	-24	-30	-36	0	-6	-12	-18	-24	-30	-36	-6	-12	-18	-24	-30	0	-6	-12	-18	-24	
Direct tension, T 314: ^g Failure strain, min 1.0% test temp @ 1.0 mm/min, °C	-24	-30	-36	0	-6	-12	-18	-24	-30	-36	-6	-12	-18	-24	-30	0	-6	-12	-18	-24	-

SuperPave Performance Grading

Р	G 46		PG 52											1								
	0 40					PG 52						PG 58					PG	64				
4 4	40	46	10	16	22	28	34	40	46	16	22	28	34	40	10	16	22	28	34	Τ		
	<46					<52						<58			<64							
34 >-	- 40	>- 46	>- 10	>- 16	>- 22	>- 28	>- 34	>- 40	>- 46	>- 16	> 22	>- 28	>- 34	>- 40	>- 10	>- 16	>- 22	>- 28	>- 34	>		
							Orig	inal Bin	der													
										230	1.5											
										135												
	46			52 Rolling Thin-						58						64						
					R	olling T	'hin-Filr	n Oven	Residue	(T 240)												
				Rolling Thin-I						1.00)											
	46					52						58					6	64				
					Pr	essuriz	ed Agin	g Vessel	Residu	e (R 28)												
1	90					90						100			100							
0	7	4	25	22	19	16	13	10	7	25 22 19 16 13				13	31	28	25	22	19	Ι		
24	-30	-36	0	-6	-12	-18	-24	-30	-36	-6	-12	-18	-24	-30	0	-6	-12	-18	-24			
24 -	-30	-36	0	-6	-12	-18	-24	-30	-36	-6	-12	-18	-24	-30	0	-6	-12	-18	-24	I		
	34 >	<46 34 >- 40 46 46 46 90 10 7 24 -30	<46 34 >-40 >-46 46 46 46 46 46 90 10 7 4 24 -30 -36	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c } < 46 & <52 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & & 58 & <58 & <58 & & 58 & <58 & <58 & & 58 & <58 & & 58 & <58 & & 58 & & 58 & <58 & & 58 & & 58 & \\ \hline \hline \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c } < 46 & & < 52 & < 58 & < 58 & \\ \hline & < 52 & > 34 & > 40 & > 46 & > 10 & > 16 & > 22 & > 28 & > 34 & > 40 & > 46 & > 16 & > 22 & > 28 & > 34 & > 40 \\ \hline & & & & & & & & \\ \hline & & & & & & & \\ \hline & & & &$	$\begin{array}{c c c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{c c c c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		


Performance Grade			PC	F 70					PG 76						PG 82					
Ferrormance Grade	10	16	22	28	34	40	10	16	22	28	34	10 16 22 28								
Average 7-day max pavement design temperature, °C ^a			<	70					<76			<82								
Min pavement design temperature, $^{\circ}C^{a}$	>-10	>-16	>-22	>-28	>-34	>-40	>-10	>-16	>-22	>-28	>-34	>-10 >-16 >-22 >-28 >-34								
						Origina	al Binder													
Flash point temp, T 48, min °C								2	30											
Viscosity, T 316: ^b max 3 Pa·s, test temp, °C								13	35											
Dynamic shear, T 315: ^{c} G*/sin8 ^{d} , min 1.00 kPa test temp @ 10 rad/s, °C			2	70					76					82						
					Rolling T	'hin-Film (Oven Resi	lue (T 240)											
Mass change, ^e max, percent								1.	00											
Dynamic shear, T 315: G*/sin δ^d , min 2.20 kPa test temp @ 10 rad/s, °C			1	70					76					82						
					Pressuriz	ed Aging V	/essel Res	idue (R 28)											
PAV aging temperature, °C [/]			100	(110)					100 (110))				100 (110))					
Dynamic shear, T 315: G* $\sin 8^d$, max 5000 kPa test temp @ 10 rad/s, °C	34	31	28	25	22	19	37	34	31	28	25	40	37	34	31	28				
Critical low cracking temp, R 49: ⁸ Critical cracking temp determined by R 49, test temp, °C	0	-6	-12	-18	-24	-30	0	-6	-12	-18	-24	0	-6	-12	-18	-24				

Example Superpave testing results for 2 binders are shown in the table below, Give the PG grade for both binders

Material type	Test	Temperature, °C	Parameter	Binder 1	Binder 2
	Rotational Viscometer	135	Viscosity, Pa*s	0.1	0.2
Original	DCD @ 10	58	C*/ .:	2.1	4.0
	DSR @ 10 rad/sec	64	G*/ sind,	1.1	2.1
	rad/sec	70 ¹ 3	Kpa	0.6	1.05
	DEB @ 10	58	G*/ sinδ,	4.5	7.0
RTFO	DSR @ 10 rad/sec	64	7	2.3	4.0
	rad/sec	70	Kpa	1.5	2.1
	DSR @ 10	19	G* * sinô,	6000	4000
	rad/sec	22	Kpa	3500	2250
PAV		-18	0.16-	200	140
	DDD	-24	S, Mpa	350	290
	BBR	-18		0.31	0.33
		-24	m	0.28	0.31

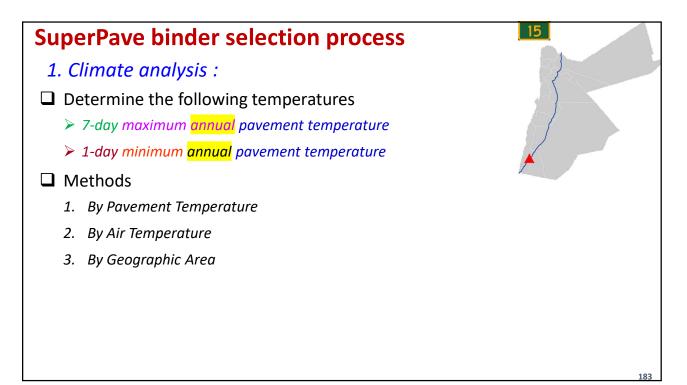
aterial type	Test	Temperature, °C	Parameter	Binder	1																		
Orbited	Rotational Viscometer	135	Viscosity, Pa*s	0.1																			
Original	DSR @ 10	58	G*/ sinő,	2.1	-																		
	rad/sec	64	G*/ sino, Kpa	1.1																			
	Tua see	70	npu	0.6		r			D.C. 50						D.G. 50			-		DO			
RTFO	DSR @ 10	58 64	G*/ sinô,	4.5					PG 52						PG 58					PG			
KIIO	rad/sec	70	Kpa	1.5		10	16	22	28	34	40	46	16	22	28	34	40	10	16	22	28	34	40
	DSR @ 10	19	G* * sinő,	6000					<52		1. T.				<58					<			
	rad/sec	22	Kpa	3500					<52						<58					<	54		
PAV		-18	S, Mpa	200	6	>- 10	>- 16	>- 22	>- 28	>- 34	>- 40	>- 46	>- 16	> 22	>- 28	>- 34	>- 40	>- 10	>- 16	>- 22	>- 28	>- 34	>- 40
	BBR	-24	S, Mpa	350						Orig	inal Bin	der											
		-18	m	0.31	-					0			230)									
Viscosity	, T 316: ^b	-24		0.20																			
	Pa·s, test tem	p, °C											135										
	shear, T 315																						
	ιδ, ^d min 1.00 l			46					52						58					6	4		
test ter	mp @ 10 rad/s	s, °C																					
	100.0		5.5			5.00		R	olling T	hin-Filn	1 Oven	Residue	(T 240)										
Mass cha	ange, ^e max, pe	ercent							0				1.00	0									
	shear, T 315:					1																	1
	ιδ, ^d min 2.20 l			46					52						58					6	4		
	mp @ 10 rad/s			10											00					0			
S.			36			SS		Pi	essurize	d Aging	Vesse	Residu	e (R 28)					10					Ċ.
PAV agi	ng temperatur	o ori		90					90				- ()		100			·		10	00		10
	shear. T 315:							<u> </u>							100					-			
	δ , ^d max 5000																						
	mp @ 10 rad/s		10	7	4	25	22	19	16	13	10	7	25	22	19	16	13	31	28	25	22	19	16
-	1																						
Creep sti	ffness, T 313:	.8																					
	300 MPa																						
	ie. min 0.300																						
	mp @ 60 s, °C	2	-24	-30	-36	0	-6	-12	-18	-24	-30	-36	-6	-12	-18	-24	-30	0	-6	-12	-18	-24	-30
	nsion, T 314:8																						
	e strain, min 1		-24	-30	-36	0	-6	-12	-18	-24	-30	-36	-6	-12	-18	-24	-30	0	-6	-12	-18	-24	-30
test ter	mp @ 1.0 mm	/min, °C																					
																			-				1//

City/location	Max. pavement temp. (°C)	Min. air temp. (°C)
Irbid	58.9	- 1.7
Mafraq	61.6	-6.0
Amman airport	61.3	-2.6
Queen A. airport	62.5	-4.3
Ghor Safi	66.0	-0.4
Maan	61.8	-7.2
H-4 Irwaished	64.8	- 5.2
H-5 Safawi	65.3	-4.5
Aqaba	66.5	2.2

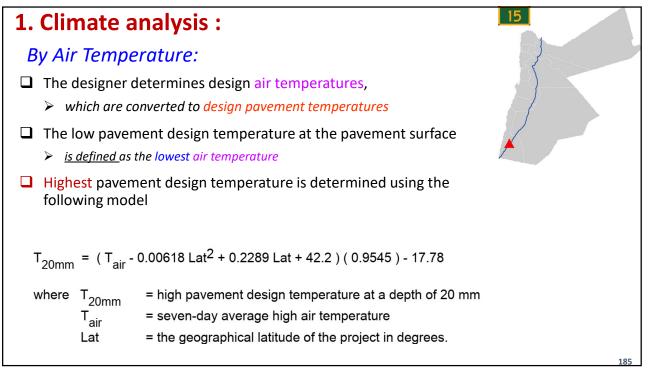
Journal of Pavement Engi

ng 14:2, 116-124, DOI: 10.1080/10298436.2011.65069

Binder Selection


SuperPave binder selection process

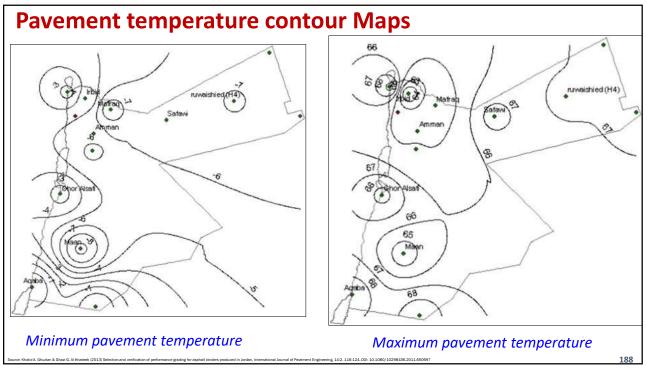
Steps

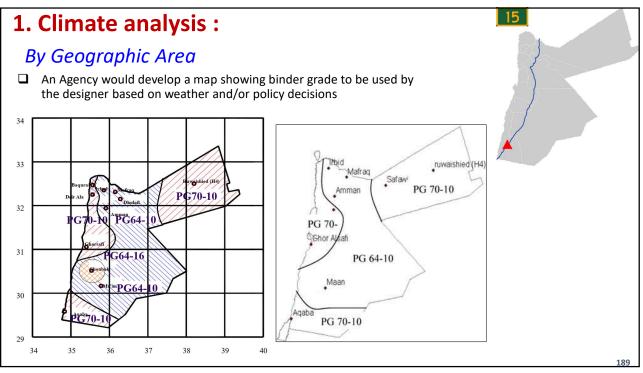

- 1. Climate analysis
- 2. Reliability analysis
- 3. Select the suitable **<u>Base PG grade</u>**
- □ PG grade bumping (Fine-tuning)

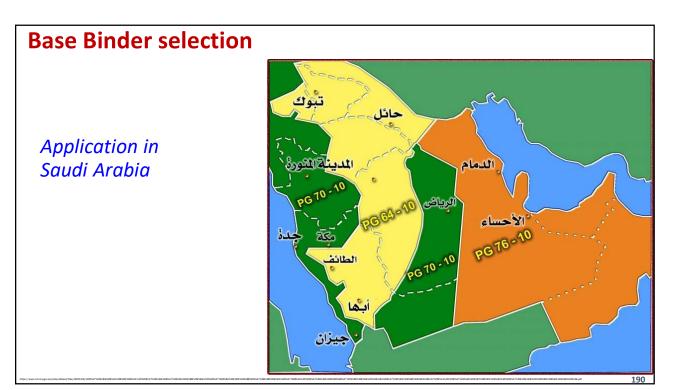
181

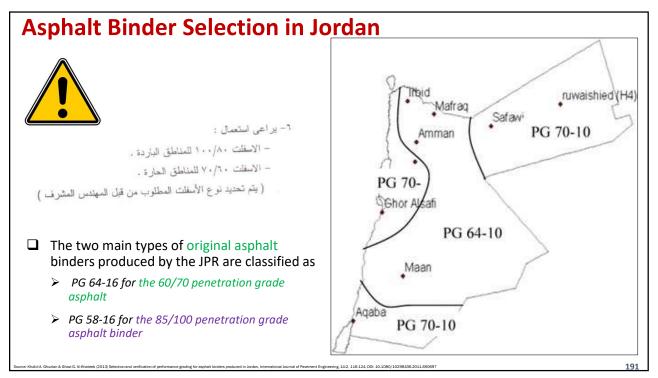
<section-header><section-header><section-header><section-header><section-header><section-header><section-header>

1. Climate a	nalysis :			15
By Pavement	: Temperature:			3
The designe temperature	r would need to kn e.	ow design pav	ement	
Unit of Time	Max. Pavement Temp. at 20mm	Min. Pavement Temp.	[/	
Daily (Five Years)	52.2	-6		
				184

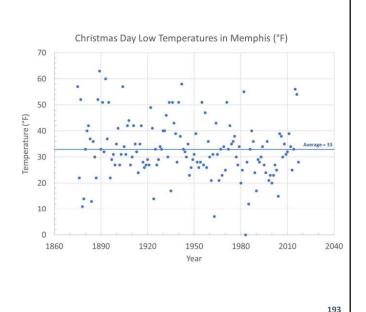

Air temperature data

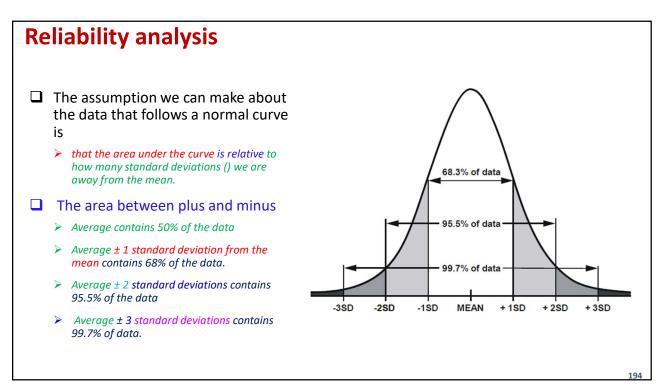

Table 3. Maximum and minimum air temperatures for different weather stations in Jordan.

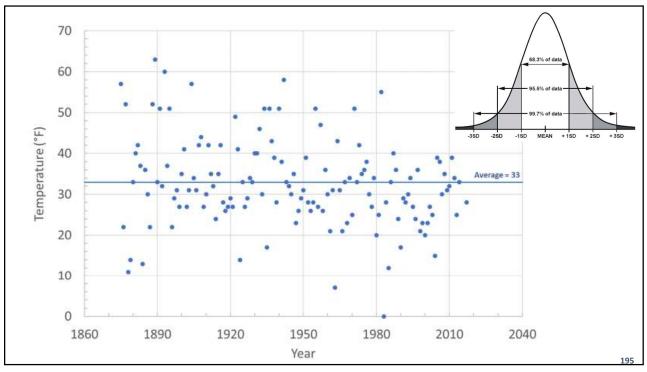

City/location		Longitude (°)	Max. air temp.			Min. air temp.		
	Latitude (°)		Mean	SD	Max. 7-day air temp.	Mean	SD	Min. temp.
Irbid	32.54	35.85	39.5	1.5	37.0	-1.1	1.2	-4.0
Mafraq	32.36	36.25	40.1	1.7	39.9	-4.2	2.4	-9.0
Amman airport	31.98	35.98	39.7	1.7	39.4	-1.6	1.5	- 5.0
Queen A. airport	31.71	35.96	40.7	1.7	40.7	- 3.7	1.7	-7.0
Ghor Safi	31.03	35.46	45.4	1.7	44.2	2.0	2.4	-2.4
Maan	30.16	35.78	40.0	1.5	39.8	-4.6	2.1	-10.4
H-4 Irwaished	32.5	38.2	42.4	1.7	43.3	-4.4	1.9	-8.0
H-5 Safawi	32.2	37.13	42.4	1.3	43.8	-3.3	1.8	-7.2
Aqaba	29.55	35.01	44.7	1.5	44.6	1.9	1.6	0.6


City/location La		Longitude (°)	Max. air temp.			Min. air temp.		
	Latitude (°)		Mean	SD	Max. 7-day air temp.	Mean	SD	Min. temp.
Irbid	32.54	35.85	39.5	1.5	37.0	-1.1	1.2	-4.0
Mafraq	32.36	36.25	40.1	1.7	39.9	-4.2	2.4	-9.0
Amman airport	31.98	35.98	39.7	1.7	39.4	-1.6	1.5	-5.0
Queen A. airport	31.71	35.96	40.7	1.7	40.7	-3.7	1.7	-7.0
Ghor Safi	31.03	35.46	45.4	1.7	44.2	2.0	2.4	-2.4
Maan	30.16	35.78	40.0	1.5	39.8	-4.6	2.1	-10.4
H-4 Irwaished	32.5	38.2	42.4	1.7	43.3	-4.4	1.9	-8.0
H-5 Safawi	32.2	37.13	42.4	1.3	43.8	-3.3	1.8	-7.2
Aqaba	29.55	35.01	44.7	1.5	44.6	1.9	1.6	0.6


	50% Reliability			98% Reliability			
City/location	Max. pavement temp. (°C)	Min. air temp. (°C)	PG selection	Max. pavement temp. (°C)	Min. air temp. (°C)	PG selection	
Irbid	58.9	- 1.7	64-10	58.9	- 1.7	64-10	
Mafraq	61.6	-6.0	64-10	61.6	-6.0	64-10	
Amman airport	61.3	-2.6	64-10	61.3	-2.6	64-10	
Queen A. airport	62.5	- 4.3	64-10	62.5	-4.3	64-10	
Ghor Safi	66.0	-0.4	70-10	66.0	-0.4	70-10	
Maan	61.8	-7.2	64-10	61.8	-7.2	64-10	
H-4 Irwaished	64.8	- 5.2	70-10	64.8	- 5.2	70-10	
H-5 Safawi	65.3	- 4.5	70-10	65.3	-4.5	70-10	
Aqaba	66.5	2.2	70-10	66.5	2.2	70-10	

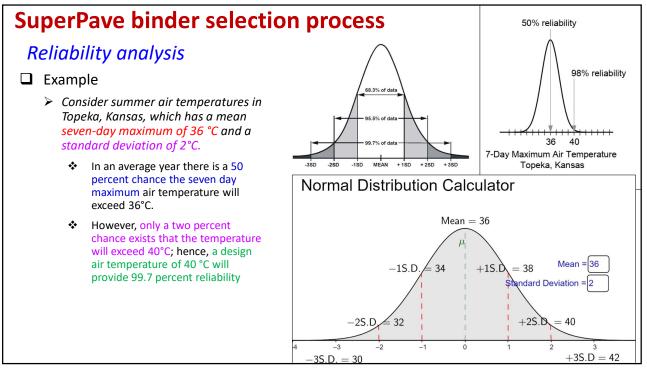





SuperPave binder selection process

Reliability analysis

- The SuperPave system allows the designers to use reliability measurements to assign a degree of design risk to the high and low pavement temperatures used in selecting the binder grade.
- Reliability is defined as
 - The percent probability in a single year that the actual temperature (one-day low or seven-day average high) will not exceed the design temperatures.
- SuperPave binder selection is very flexible in that a different level of reliability can be assigned to high and low temperature grades.



2. Reliability analysis

Importance

	Min. air	temp.			
City/location	Mean	SD	Min. temp.		
Irbid	-1.1	1.2	-4.0		
Mafraq	-4.2	2.4	-9.0		
Amman airport	-1.6	1.5	-5.0		
Queen A. airport	-3.7	1.7	-7.0		
Ghor Safi	2.0	2.4	-2.4		
Maan	-4.6	2.1	-10.4		
H-4 Irwaished	-4.4	1.9	-8.0		
H-5 Safawi	-3.3	1.8	-7.2		
Aqaba	1.9	1.6	0.6		

SuperPave binder selection process

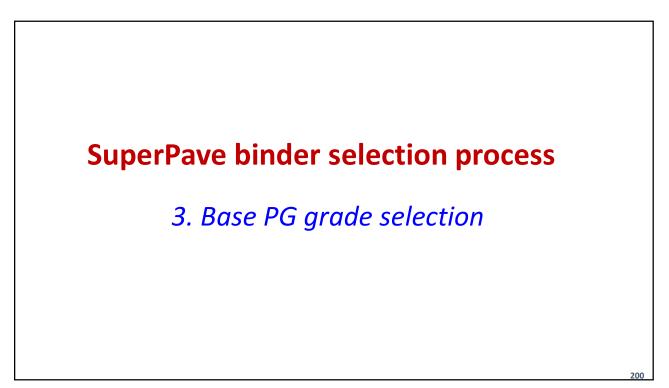
Example

□ What base PG asphalt binder grade should be selected under the following conditions:

- The seven-day maximum pavement temperature has a
 - Mean of 57 °C
 - Standard deviation of 2 °C.
- The minimum pavement temperature has a
 - mean of 6°C
 - Standard deviation of 3°C.

Reliability is 99.7%

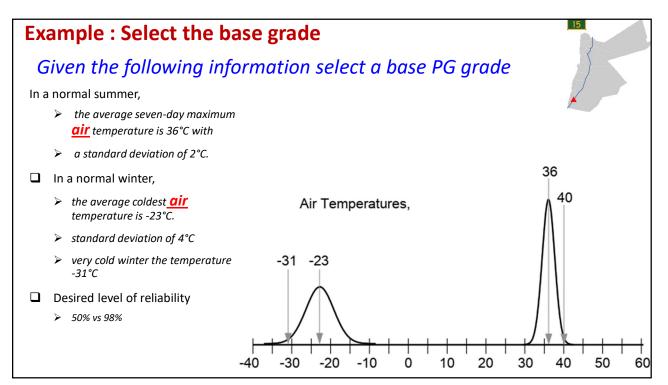
High Temperature Grades (°C)	Low Temperature Grades (°C)
PG 46	-34, -40, -46
PG 52	-10, -16, -22, -28, -34, -40, -46
PG 58	-16, -22, -28, -34, -40
PG 64	-10, -16, -22, -28, -34, -40
PG 70	-10, -16, -22, -28, -34, -40
PG 76	-10, -16, -22, -28, -34
PG 82	-10, -16, -22, -28, -34

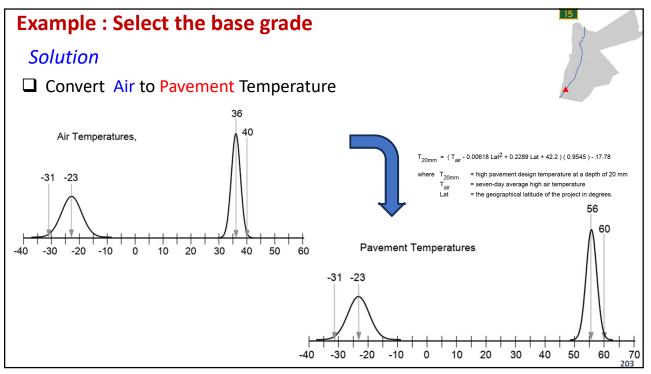

SuperPave binder selection process

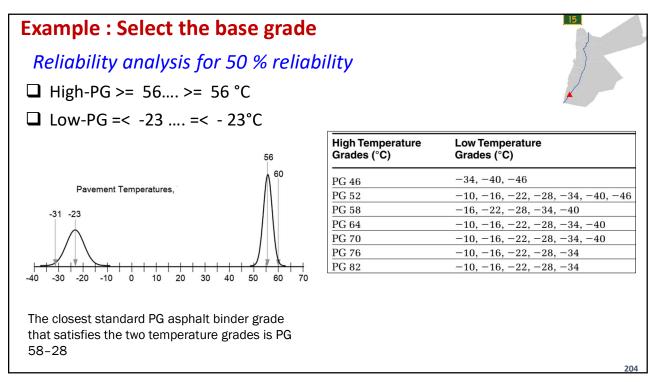
Solution

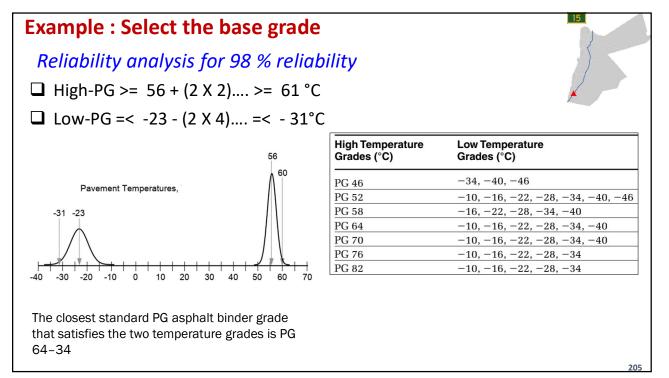
- \Box High-temperature grade >= 57 + (2 X 2).... >= 61 °C
- □ Low-temperature grade =< -6 (2 X 3).... =< -12 °C

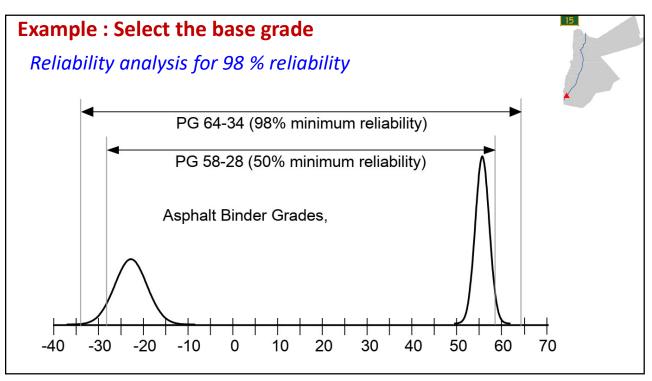
The closest standard PG asphalt binder grade that satisfies the two temperature grades is PG 64–16

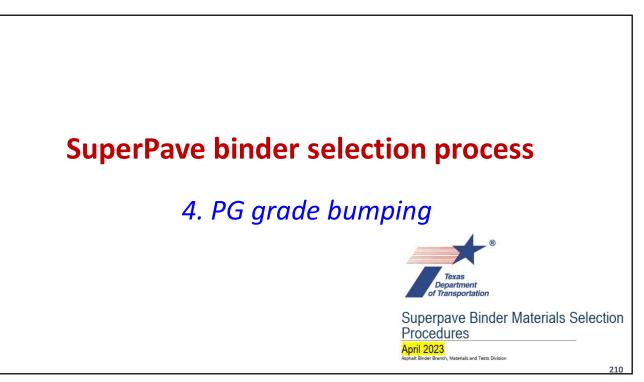

High Temperature Grades (°C)	Low Temperature Grades (°C)
PG 46	-34, -40, -46
PG 52	-10, -16, -22, -28, -34, -40, -46
PG 58	-16, -22, -28, -34, -40
PG 64	-10, -16, -22, -28, -34, -40
PG 70	-10, -16, -22, -28, -34, -40
PG 76	-10, -16, -22, -28, -34
PG 82	-10, -16, -22, -28, -34

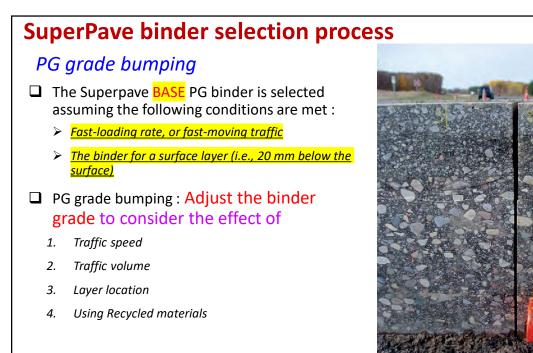


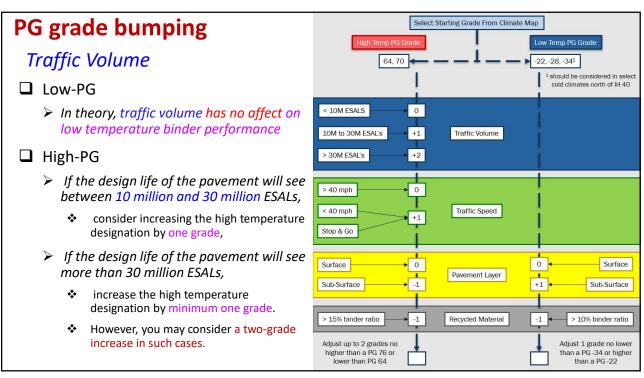

SuperPave binder selection process

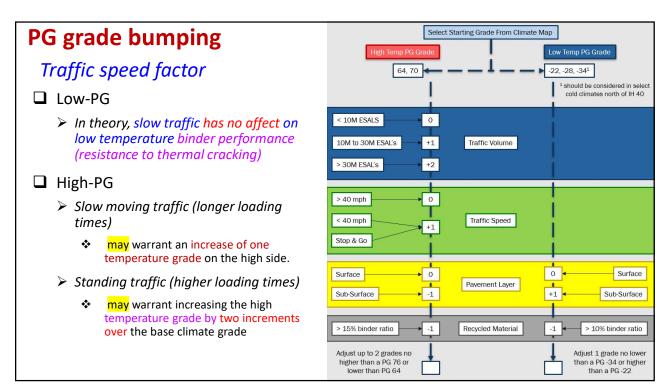

- 3. Base PG grade selection
- □ Select the suitable Base PG grade based on the determined
 - 1. Determine the 7-day maximum pavement temperature
 - 2. 1-day minimum pavement temperature
 - 3. Desired level of reliability (50% vs 98%)

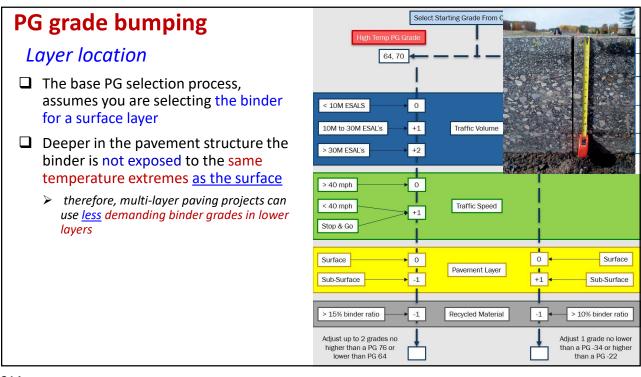


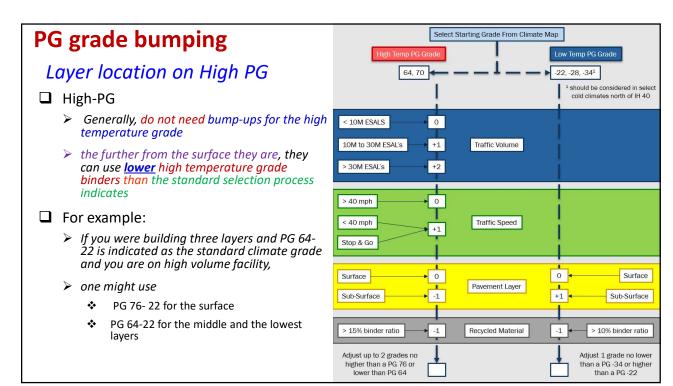


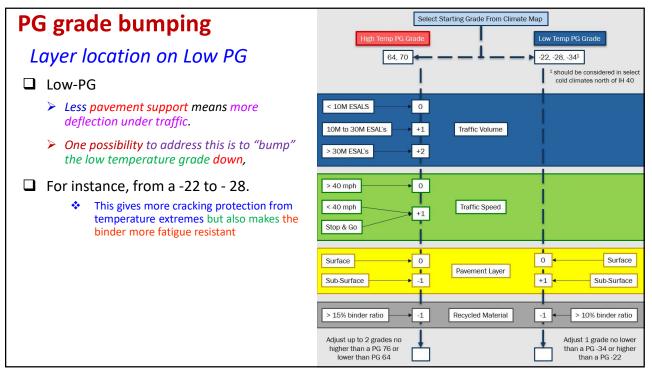


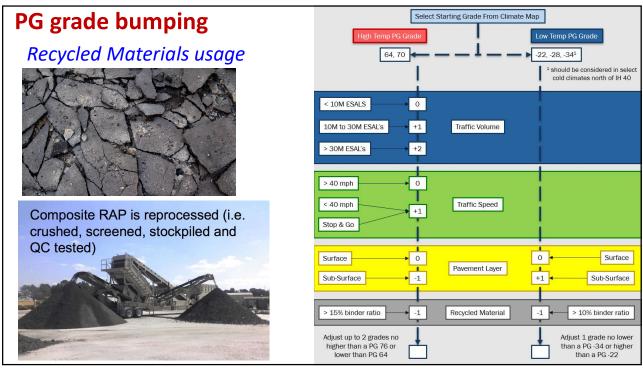


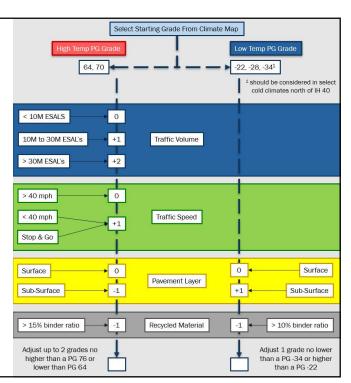

City/location Latitude (°) Long				Max. air temp.		Min. air	temp.	
	Longitude (°)	Mean	SD	Max. 7-day air temp.	Mean	SD	Min. temp.	
Irbid	32.54	35.85	39.5	1.5	37.0	-1.1	1.2	-4.0
Mafraq	32.36	36.25	40.1	1.7	39.9	-4.2	2.4	-9.0
Amman airport	31.98	35.98	39.7	1.7	39.4	-1.6	1.5	-5.0
Queen A. airport	31.71	35.96	40.7	1.7	40.7	-3.7	1.7	-7.0
Ghor Safi	31.03	35.46	45.4	1.7	44.2	2.0	2.4	-2.4
Maan	30.16	35.78	40.0	1.5	39.8	-4.6	2.1	-10.4
H-4 Irwaished	32.5	38.2	42.4	1.7	43.3	-4.4	1.9	-8.0
H-5 Safawi	32.2	37.13	42.4	1.3	43.8	-3.3	1.8	-7.2
Aqaba	29.55	35.01	44.7	1.5	44.6	1.9	1.6	0.6


	:	50% Reliability		98% Reliability			
City/location	Max. pavement temp. (°C)	Min. air temp. (°C)	PG selection	Max. pavement temp. (°C)	Min. air temp. (°C)	PG selection	
Irbid	58.9	- 1.7	64-10	58.9	- 1.7	64-10	
Mafraq	61.6	-6.0	64-10	61.6	-6.0	64-10	
Amman airport	61.3	- 2.6	64-10	61.3	-2.6	64-10	
Queen A. airport	62.5	-4.3	64-10	62.5	-4.3	64-10	
Ghor Safi	66.0	-0.4	70-10	66.0	-0.4	70-10	
Maan	61.8	-7.2	64-10	61.8	-7.2	64-10	
H-4 Irwaished	64.8	- 5.2	70-10	64.8	- 5.2	70-10	
H-5 Safawi	65.3	-4.5	70-10	65.3	-4.5	70-10	
Agaba	66.5	2.2	70-10	66.5	2.2	70-10	

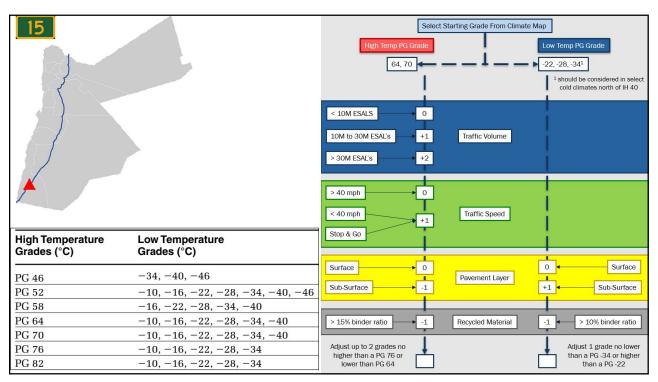


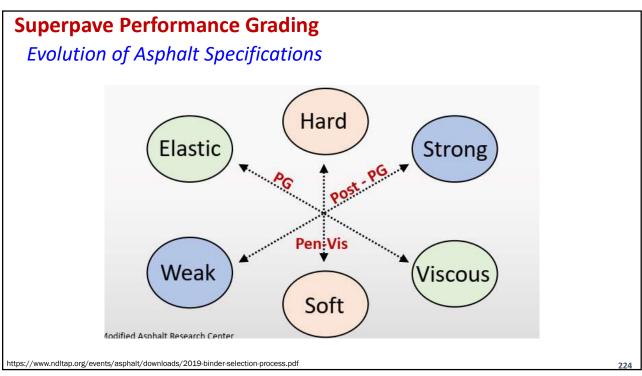


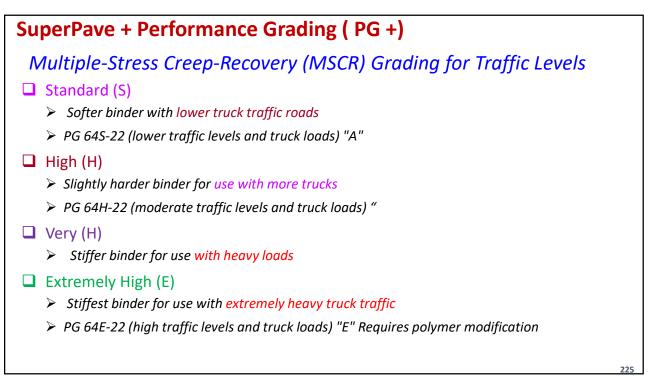




PG grade bumping


Engineering Judgment


- Use judgment in the number of hightemperature grade "bump-ups."
- One could come up with a scenario in which a base climate grade of PG 64-22 is bumped three or four times resulting in a PG 82-22 to be specified for a project.
 - This would probably be overkill and would result in a very expensive binder,
 - which also may be difficult to place.
- □ Therefore, limits should be used
 - A maximum <u>two-grade increase</u>
 - to no higher than a PG 76 is usually sufficient in all but the most extreme conditions.


			Max. tem			Min. air		
City/location	City/location Latitude (°) Longitud	Longitude (°)	Mean	SD	Max. 7-day air temp.	Mean	SD	Min. temp.
Irbid	32.54	35.85	39.5	1.5	37.0	-1.1	1.2	-4.0
Mafraq	32.36	36.25	40.1	1.7	39.9	-4.2	2.4	-9.0
Amman airport	31.98	35.98	39.7	1.7	39.4	-1.6	1.5	-5.0
Queen A. airport	31.71	35.96	40.7	1.7	40.7	-3.7	1.7	-7.0
Ghor Safi	31.03	35.46	45.4	1.7	44.2	2.0	2.4	-2.4
Maan	30.16	35.78	40.0	1.5	39.8	-4.6	2.1	-10.4
H-4 Irwaished	32.5	38.2	42.4	1.7	43.3	-4.4	1.9	-8.0
H-5 Safawi	32.2	37.13	42.4	1.3	43.8	-3.3	1.8	-7.2
Aqaba	29.55	35.01	44.7	1.5	44.6	1.9	1.6	0.6

	:	50% Reliability		98% Reliability			
City/location	Max. pavement temp. (°C)	Min. air temp. (°C)	PG selection	Max. pavement temp. (°C)	Min. air temp. (°C)	PG selection	
Irbid	58.9	- 1.7	64-10	58.9	- 1.7	64-10	
Mafraq	61.6	-6.0	64-10	61.6	-6.0	64-10	
Amman airport	61.3	-2.6	64-10	61.3	-2.6	64-10	
Queen A. airport	62.5	-4.3	64-10	62.5	-4.3	64-10	
Ghor Safi	66.0	-0.4	70-10	66.0	-0.4	70-10	
Maan	61.8	-7.2	64-10	61.8	-7.2	64-10	
H-4 Irwaished	64.8	- 5.2	70-10	64.8	- 5.2	70-10	
H-5 Safawi	65.3	- 4.5	70-10	65.3	-4.5	70-10	
Aqaba	66.5	2.2	70-10	66.5	2.2	70-10	

