

132

Superpave: The Future of Asphalt

Superpave binder property measurements

134

Rotational viscosity

ASTM D4402

- \Box Used to determine the flow characteristics of the asphalt binder
	- \triangleright To ensure that the asphalt is fluid enough to be pumped and handled at the hot mix facility
- \Box Measured on the original asphalt binder
- \Box Test temperature at 135 C
- **Maximum viscosity 3 Pa.s**

Rolling Thin Film Oven Test ASTM D2872

\Box Scope

It has the same purpose as the TFO, but the test setup was modified to achieved several advantages over the TFO including

- Less testing time
- ❖ Ability to test large number of samples

\Box The differences between the TFOT and the
RTFOT methods are RTFOT methods are

- Type of oven used
- ❖ The quantity of the asphalt sample
- The type of containers
- * The duration of rotation and the absence of applying airflow on the samples

(PDF) Effects of exposure time and temperature in aging test on asphalt binder properties (researchgate.net)

ma: time τ_{min} $-\Delta t$ time $\gamma_{\rm min}$ $\tau_{\text{max}}-\tau_{\text{min}}$ $G^* =$ $\gamma_{\text{max}} - \gamma_{\text{min}}$ Δt = time lag $\rightarrow \delta$ 145

Viscous Behavior G_1^* **ANTERNA** $V₁$ both viscous and elastic behavior tar G_2^* θ $V₂$ А Viscous Axis δ 2 δ_1 $E1$ $E2$ Viscous
Portion **Elastic Behavior** hase Angle Elastic Axis Elastic Portion 151

Dynamic Shear Rheometer (DSR)

AASHTO T 315

Rutting Parameter: | G* | / sin δ

Rutting is basically a cyclic loading phenomenon. To minimize rutting, the amount of work dissipated per loading cycle should be minimized. The work dissipated per loading cycle at a constant stress can be expressed as:

$$
W_c = \pi \sigma_0^2 \left[\frac{1}{G \frac{Z}{\sin \delta}} \right] \qquad \qquad \downarrow
$$

To minimize the work dissipated per loading cycle, the parameter $|G^*|$ /sin δ should be maximized. Therefore, minimum values for the rutting parameter are specified in the performance grading system.

Permanent Deformation (Rutting)

- $G^*/sin \delta$ at test temperature > 1.00 kPa original binder
- $G^*/sin \delta$ at test temperature > 2.20 kPa RTFOT binder

152

152

Dynamic Shear Rheometer (DSR) AASHTO T 315 Fatigue Parameter: | G* | sin δ Since fatigue cracking is more prevalent in thin pavements, the parameter of most concern for fatigue resistance can be considered a strain-controlled one. The work dissipated per loading cycle at a Fatigue Cracking constant strain can be expressed as: G^* (sin δ) at test temperature < 5000 kPa **PAV** binder $W_c = \pi \varepsilon_0^2 \left[(G^*) (\sin \delta) \right]$ To minimize the work dissipated per loading cycle, the parameter IG* | sinδ should be minimized. Therefore, maximum values for the fatigue parameter are specified in the performance grading system. 153

Direct Tension Test AASHTO T 314

- \square Strong relationship between stiffness of asphalt binders and the amount of stretching they undergo before breaking
- Ductile Asphalts
	- \triangleright Asphalts that undergo considerable stretching before failure

Q Brittle Asphalts

- \triangleright Asphalts those that break without much stretching example Bath
- **Q** Typically,
	- \triangleright Stiffer asphalts are more brittle
	- S Softer asphalts more ductile
- \Box It is important that asphalts be capable of a minimal amount of elongation
- \Box Creep stiffness as measured by the BBR $\frac{1}{15}$ not adequate enough to completely characterize the capacity of asphalts to stretch before breaking

159

159

ample

Sample

Superpave: The Future of Asphalt

Superpave binder property measurements
Table 5.5
Summary of the Superpave Test and Requirements

SuperPave Performance Grading

Grading system

165

Penetration Grading system

ASTM D946

- \square Binder are classified based on penetration test results
- \Box Five penetration grades are specified

167

167

Superpave: The Future of Asphalt

SuperPave Performance Grading

Example
Superpave testing results for 2 binders are shown in the table below, Give
the PG grade for both binders

Binder Selection

SuperPave binder selection process **Binder Selection**

SuperPave binder selection process

Steps

1. Climate analysis

2. Reliability analysis

3. Select the suitable **Base PG grade**

□ PG grade bumping (Fine-tuning) **Binder Selection**

SuperPave binder selection process

Steps

1. Climate analysis

2. Reliability analysis

3. Select the suitable **Base PG grade**

□ PG grade bumping (Fine-tuning) Sinder Selection

SuperPave binder selection process

Steps

1. Climate analysis

2. Reliability analysis

3. Select the suitable **Base PG grade**

□ PG grade bumping (Fine-tuning)

Steps

-
-
-
- \Box PG grade bumping (Fine-tuning)

1. Climate analysis : 15 By Pavement Temperature: \Box The designer would need to know design pavement temperature. **Min. Pavement** Max. Pavement Temp. at **Unit of Time** $20mm$ Temp. Daily (Five Years) 52.2 -6

Air temperature data

SuperPave binder selection process

Reliability analysis

- to use reliability measurements to assign a degree of design risk to the high and low pavement temperatures used in selecting the binder grade.
-
- **a** Reliability is defined as
 \triangleright The percent probability in a single year that

the actual temperature (one-day low or

seven-day average high) will not <u>exceed the</u>

design temperatures. Figure The percent probability in a single year that $\frac{1}{2}$ 40 the actual temperature (one-day low or seven-day average high) will not exceed the $\frac{a}{2}$ 30 design temperatures.
- \Box SuperPave binder selection is very flexible in that a different level of reliability can be assigned to high and low temperature
 $\frac{1}{2}$ grades.

2. Reliability analysis

Importance

SuperPave binder selection process

Example

□ What base PG asphalt binder grade should be selected under the following conditions:

- \triangleright The seven-day maximum pavement temperature has a
	- Mean of 57 °C
	- Standard deviation of 2 °C.
- \triangleright The minimum pavement temperature has a
	-
	- Standard deviation of 3°C.

 \triangleright Reliability is 99.7%

SuperPave binder selection process

Solution

- \Box High-temperature grade >= 57 + (2 X 2).... >= 61 °C
-

The closest standard PG asphalt binder grade that satisfies the two temperature grades is PG 64–16

199

SuperPave binder selection process

- 3. Base PG grade selection
- \square Select the suitable Base PG grade based on the determined **perPave binder selection process**
 Base PG grade selection

Select the suitable Base PG grade based on the determined

1. Determine the 7-day maximum pavement temperature

2. 1-day minimum pavement temperature

3. Desir **perPave binder selection process**
 Base PG grade selection

Select the suitable Base PG grade based on the determined

1. Determine the 7-day maximum pavement temperature

2. 1-day minimum pavement temperature

3. Desir **perPave binder selection process**
 Base PG grade selection

Select the suitable Base PG grade based on the determined

1. Determine the 7-day maximum pavement temperature

2. 1-day minimum pavement temperature

3. Desir
	-
	-
	-

2012 - 211 - 212 - 212 - 212 - 212 - 212 - 212 - 212 - 212 - 212 - 212 - 212 - 212 - 212 - 212 - 212

PG grade bumping Engineering Judgment Use judgment in the number of hightemperature grade "bump-ups." \Box One could come up with a scenario in which a base climate grade of PG 64-22 is bumped three or four times resulting in a PG 82-22 to **FACULT** A 30M ESAL'S be specified for a project. \triangleright This would probably be overkill and would result $\frac{1}{\cdot}$ >40 mph in a very expensive binder, which also may be difficult to place. \Box Therefore, limits should be used A maximum two-grade increase

 \triangleright to no higher than a PG 76 is usually sufficient in \Box Sub-Surface all but the most extreme conditions.

