

k	Equipment	Purpose	Performance Parameter
u	Rolling Thin Film Oven (RTFO)	Simulate binder aging (hardening) during HMA production and construction	Resistance to aging (durability) during construction
	Pressure Aging Vessel (PAV)	Simulate binder aging (hardening) during HMA service life	Resistance to aging (durability) during service life
	Rotational Viscometer (RV)	Measure binder properties at high con- struction temperatures	Handling and pumping
	Dynamic Shear Rheometer (DSR)	Measure binder properties at high and intermediate service temperatures	Resistance to permanent deformation (rutting) and fatigue cracking
	Bending Beam Rheometer (BBR)	Measure binder properties at low service temperatures	Resistance to thermal cracking
	Direct Tension Tester (DTT)	Measure binder properties at low service temperatures	Resistance to thermal cracking

Superpave: The Future of Asphalt

Superpave binder property measurements

Equipment	Purpose	Performance Parameter
Rolling Thin Film Oven (RTFO)	Simulate binder aging (hardening) during HMA production and construction	Resistance to aging (durability) during construction
Pressure Aging Vessel (PAV)	Simulate binder aging (hardening) during HMA service life	Resistance to aging (durability) during service life
Rotational Viscometer (RV)	Measure binder properties at high con- struction temperatures	Handling and pumping

Rotational viscosity ASTM D4402 Used to determine the flow characteristics of the asphalt binder To ensure that the asphalt is fluid enough to be pumped and handled at the hot mix facility Measured on the original asphalt binder Test temperature at 135 C Maximum viscosity 3 Pa.s

 The duration of rotation and the absence of applying airflow on the samples

Dynamic Shear Rheometer (DSR) AASHTO T 315 The DSR measures a specimen's complex shear modulus (G*) and phase angle (δ). The complex shear modulus (G*) can be considered the sample's total resistance to deformation when repeatedly sheared while the phase angle (δ), is the lag between the applied shear stress and the resulting shear strain. The larger the phase angle (δ), the more viscous the material.

- indicates the relative amounts of recoverable and nonrecoverable deformation
- **D** Phase angle (δ) limiting values are:
 - > Purely elastic material: $\delta = 0$ degrees
 - Purely viscous material: δ = 90 degrees

Dynamic Shear Rheometer (DSR)

AASHTO T 315

Rutting Parameter: $|G^*|/sin\delta$

Rutting is basically a cyclic loading phenomenon. To minimize rutting, the amount of work dissipated per loading cycle should be minimized. The work dissipated per loading cycle at a constant stress can be expressed as:

$$W_{\varepsilon} = \pi \sigma_0^2 \left[\frac{1}{\frac{G^*}{\sin \delta}} \right] \qquad \wp$$

To minimize the work dissipated per loading cycle, the parameter $|G^*|/\sin\delta$ should be maximized. Therefore, minimum values for the rutting parameter are specified in the performance grading system.

Permanent Deformation (Rutting)

- G*/sin δ at test temperature > 1.00 kPa original binder
- G*/sin δ at test temperature > 2.20 kPa RTFOT binder

152

<section-header><section-header><section-header><text><text><text><equation-block><equation-block><equation-block>

Direct Tension Test

AASHTO T 314

- Strong relationship between stiffness of asphalt binders and the amount of stretching they undergo before breaking
- Ductile Asphalts
 - > Asphalts that undergo considerable stretching before failure

Brittle Asphalts

- > Asphalts those that break without much stretching
- Typically,
 - > Stiffer asphalts are more brittle
 - > Softer asphalts more ductile
- □ It is important that asphalts be capable of a minimal amount of elongation
- Creep stiffness as measured by the BBR is not adequate enough to completely characterize the capacity of asphalts to stretch before breaking

159

Direct Tesion Teste

Sample

Sample Bath

Superpave: The Future of Asphalt

Superpave binder property measurements

 Table 5.5
 Summary of the Superpave Test and Requirements

	Construction		t Deformation utting)	Fatigue Cracking	Low-Temperature	Cracking
Test	RV	DSR	DSR	DSR	BBR	DT
Aging Condition	None	None	RTFO	RTFO + PAV	RTFO + PAV	
Test Temperature	135°C	Seven-day average maximum pavement temperature	Seven-day average maximum pavement temperature	$0.5 \times$ (seven- day average maximum pavement temperature + minimum pavement temperature) + 4	Minimum Pavement Temperature + 10°C	Minimum Pavement Temperature + 10°C
(Example: For PG 64–22)		(64°C)	(64°C)	(25 °C)	(-12 °C)	(–12 °C)
Parameter	Viscosity	$ G^* /\sin\delta$	G* /sin δ	$ G^* \times \sin \delta$	$\begin{array}{cc} S \left(t = 60 & m \left(t = 60 \\ sec \right) & sec \end{array} \right)$	ε _f
Requirement	\leq 3 Pas	(≥ 1.0 kPa)	(≥ 2.2 kPa)	(≤ 5000 kPa)	\leq 300 MPa \geq 0.3	$\geq 1.0\%$

TABLE 9.2 Bind Specifications	er Grades in the Performance Grade
High Temperature Grades (°C)	Low Temperature Grades (°C)
PG 46	-34, -40, -46
PG 52	-10, -16, -22, -28, -34, -40, -40
PG 58	-16, -22, -28, -34, -40
PG 64	-10, -16, -22, -28, -34, -40
PG 70	-10, -16, -22, -28, -34, -40
PG 76	-10, -16, -22, -28, -34
PG 82	-10, -16, -22, -28, -34

SuperPave Performance Grading

Grading system

Penetration Grading system

ASTM D946

- □ Binder are classified based on penetration test results
- □ Five penetration grades are specified

	Pene	tration
Grade	min.	max.
40-50	40	50
60-70	60	70
85-100	85	100
120-150	120	150
200-300	200	300

167

Superpave: The Future of Asphalt

Superpave	binder	property	measurements
-----------	--------	----------	--------------

 Table 5.5
 Summary of the Superpave Test and Requirements
 Construction **Permanent Deformation** Fatigue (Rutting) Cracking Low-Temperature Cracking RV DSR DSR DSR BBR DT Test Aging Condition None **RTFO** RTFO + PAV RTFO + PAV None 135°C Minimum Pavement Test Seven-day Seven-day $0.5 \times (seven-$ Minimum Temperature day average Temperature + 10°C Pavement average average Temperature + 10°C maximum maximum maximum pavement pavement pavement temperature temperature temperature + minimum pavement temperature) + 4 (64°C) (64°C) (-12 °C) (-12 °C) (Example: For (25 °C) PG 64-22) Parameter Viscosity $|G^*|/\sin\delta$ $|G^*|/\sin\delta$ $|G^*| \times \sin \delta$ $S(t = 60 m(t = 60 \varepsilon_f)$ sec) sec) \leq 300 MPa \geq 0.3 Requirement \leq 3 Pas $(\geq 1.0 \ kPa)$ $(\geq 2.2 \text{ kPa})$ (≤ 5000 kPa) $\geq 1.0\%$

24		PG 46	2				PG 52				PG 58					PG 64					
Performance Grade	34	40	46	10	16	22	28	34	40	46	16	22	28	34	40	10	16	22	28	34	40
Average 7-day max pavement design temp, ${}^{\circ}C^{a}$		<46					<52						<58					<	64		
Min pavement design temperature, °C ^a	>- 34	>- 40	>- 46	>- 10	>- 16	>- 22	>- 28	>- 34	>- 40	>- 46	>- 16	> 22	>- 28	>- 34	>- 40	>- 10 >- 16 >- 22 >- 28 >- 34				>- 4	
								Orig	inal Bin	der											
Flash point temp, T 48, min °C											230										
Viscosity, T 316: ^b max 3 Pa·s, test temp, °C											135										
Dynamic shear, T 315: ^c G*/sinô, ^d min 1.00 kPa test temp @ 10 rad/s, °C		46					52						58					6	4		
						R	olling T	hin-Filn	Oven	Residue	(T 240)										
Mass change, e max, percent											1.00)									
Dynamic shear, T 315: G*/sin∂, ^d min 2.20 kPa test temp @ 10 rad/s, °C		46					52						58					6	4		
						Pi	ressurize	d Aging	g Vessel	Residu	e (R 28)										
PAV aging temperature, °C ¹		90	2				90					94. T	100					10	00		
Dynamic shear, T 315: G* sinô, ^d max 5000 kPa test temp @ 10 rad/s, °C	10	7	4	25	22	19	16	13	10	7	25	22	19	16	13	31	28	25	22	19	1
Creep stiffness, T 313: ^g	-			-		<u> </u>															<u> </u>
S, max 300 MPa <i>m</i> -value, min 0.300 test temp @ 60 s, °C	-24	-30	-36	0	-6	-12	-18	-24	-30	-36	-6	-12	-18	-24	-30	0	-6	-12	-18	-24	_
Direct tension, T 314: ^g Failure strain, min 1.0% test temp @ 1.0 mm/min, °C	-24	-30	-36	0	-6	-12	-18	-24	-30	-36	-6	-12	-18	-24	-30	0	-6	-12	-18	-24	-

SuperPave Performance Grading

Р	G 46		PG 52											1								
	0 40					PG 52						PG 58					PG	64				
4 4	40	46	10	16	22	28	34	40	46	16	22	28	34	40	10	16	22	28	34	Τ		
	<46					<52						<58			<64							
34 >-	- 40	>- 46	>- 10	>- 16	>- 22	>- 28	>- 34	>- 40	>- 46	>- 16	> 22	>- 28	>- 34	>- 40	>- 10	>- 16	>- 22	>- 28	>- 34	>		
							Orig	inal Bin	der													
										230	1.5											
										135												
	46			52 Rolling Thin-						58						64						
					R	olling T	'hin-Filr	n Oven	Residue	(T 240)												
				Rolling Thin-I						1.00)											
	46					52						58					6	64				
					Pr	essuriz	ed Agin	g Vessel	Residu	e (R 28)												
1	90					90						100			100							
0	7	4	25	22	19	16	13	10	7	25 22 19 16 13				13	31	28	25	22	19	Ι		
24	-30	-36	0	-6	-12	-18	-24	-30	-36	-6	-12	-18	-24	-30	0	-6	-12	-18	-24			
24 -	-30	-36	0	-6	-12	-18	-24	-30	-36	-6	-12	-18	-24	-30	0	-6	-12	-18	-24	I		
	34 >	<46 34 >- 40 46 46 46 90 10 7 24 -30	<46 <46 34 >-40 >-46 46 46 46 46 90 10 7 4 24 -30 -36	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c } < 46 & <52 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & <58 & & 58 & <58 & <58 & & 58 & <58 & <58 & & 58 & <58 & & 58 & <58 & & 58 & & 58 & <58 & & 58 & & 58 & \\ \hline \hline \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c } < 46 & & < 52 & < 58 & < 58 & \\ \hline & < 52 & > 34 & > 40 & > 46 & > 10 & > 16 & > 22 & > 28 & > 34 & > 40 & > 46 & > 16 & > 22 & > 28 & > 34 & > 40 \\ \hline & & & & & & & & \\ \hline & & & & & & & \\ \hline & & & &$	$\begin{array}{c c c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{c c c c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		

Performance Grade			PC	F 70					PG 76						PG 82					
Ferrormance Grade	10	16	22	28	34	40	10	16	22	28	34	10 16 22 28								
Average 7-day max pavement design temperature, °C ^a			<	70					<76			<82								
Min pavement design temperature, $^{\circ}C^{a}$	>-10	>-16	>-22	>-28	>-34	>-40	>-10	>-16	>-22	>-28	>-34	>-10 >-16 >-22 >-28 >-34								
						Origina	al Binder													
Flash point temp, T 48, min °C								2	30											
Viscosity, T 316: ^b max 3 Pa·s, test temp, °C								13	35											
Dynamic shear, T 315: ^{c} G*/sin8 ^{d} , min 1.00 kPa test temp @ 10 rad/s, °C			2	70					76					82						
					Rolling T	'hin-Film (Oven Resi	lue (T 240)											
Mass change, ^e max, percent								1.	00											
Dynamic shear, T 315: G*/sin δ^d , min 2.20 kPa test temp @ 10 rad/s, °C			1	70					76					82						
					Pressuriz	ed Aging V	/essel Res	idue (R 28)											
PAV aging temperature, °C [/]			100	(110)					100 (110))				100 (110))					
Dynamic shear, T 315: G* $\sin 8^d$, max 5000 kPa test temp @ 10 rad/s, °C	34	31	28	25	22	19	37	34	31	28	25	40	37	34	31	28				
Critical low cracking temp, R 49: ⁸ Critical cracking temp determined by R 49, test temp, °C	0	-6	-12	-18	-24	-30	0	-6	-12	-18	-24	0	-6	-12	-18	-24				

Example Superpave testing results for 2 binders are shown in the table below, Give the PG grade for both binders

Material type	Test	Temperature, °C	Parameter	Binder 1	Binder 2
	Rotational Viscometer	135	Viscosity, Pa*s	0.1	0.2
Original	DCD @ 10	58	C*/ .:	2.1	4.0
	DSR @ 10 rad/sec	64	G*/ sind,	1.1	2.1
	rad/sec	70 ¹ 3	Kpa	0.6	1.05
	DEB @ 10	58	G*/ sinδ,	4.5	7.0
RTFO	DSR @ 10 rad/sec	64	7	2.3	4.0
	rad/sec	70	Kpa	1.5	2.1
	DSR @ 10	19	G* * sinð,	6000	4000
	rad/sec	22	Kpa	3500	2250
PAV		-18	0.16-	200	140
	DDD	-24	S, Mpa	350	290
	BBR	-18		0.31	0.33
		-24	m	0.28	0.31

aterial type	Test	Temperature, °C	Parameter	Binder	1																		
Orbited	Rotational Viscometer	135	Viscosity, Pa*s	0.1																			
Original	DSR @ 10	58	G*/ sinô.	2.1	-																		
	rad/sec	64	G*/ sino, Kpa	1.1																			
	Tua see	70	npu	0.6		r			D.C. 50						D.G. 50			-		DO			
RTFO	DSR @ 10	58 64	G*/ sinô,	4.5					PG 52						PG 58					PG			
KIIO	rad/sec	70	Kpa	1.5		10	16	22	28	34	40	46	16	22	28	34	40	10	16	22	28	34	40
	DSR @ 10	19	G* * sinő,	6000					<52		1. T.				<58					<			
	rad/sec	22	Kpa	3500					<52						<58					<	54		
PAV		-18	S, Mpa	200	6	>- 10	>- 16	>- 22	>- 28	>- 34	>- 40	>- 46	>- 16	> 22	>- 28	>- 34	>- 40	>- 10	>- 16	>- 22	>- 28	>- 34	>- 40
	BBR	-24	S, Mpa	350						Orig	inal Bin	der											
		-18	m	0.31	-					0			230)									
Viscosity	, T 316: ^b	-24		0.20																			
	Pa·s, test tem	p, °C											135										
	shear, T 315																						
	ιδ, ^d min 1.00 l			46					52						58					6	4		
test ter	mp @ 10 rad/s	s, °C																					
	100.0		5.5			5.00		R	olling T	hin-Filn	1 Oven	Residue	(T 240)										
Mass cha	ange, ^e max, pe	ercent							0				1.00	0									
	shear, T 315:					1																	1
	ιδ, ^d min 2.20 l			46					52						58					6	4		
	mp @ 10 rad/s			10											00					0			
S.			36			22		Pi	essurize	d Aging	Vesse	Residu	e (R 28)					10					Ċ.
PAV agi	ng temperatur	o ori		90					90				- ()		100			·		10	00		10
	shear. T 315:							<u> </u>							100					-			
	δ , ^d max 5000																						
	mp @ 10 rad/s		10	7	4	25	22	19	16	13	10	7	25	22	19	16	13	31	28	25	22	19	16
-	1																						
Creep sti	ffness, T 313:	.8																					
	300 MPa																						
	ie. min 0.300																						
	mp @ 60 s, °C	2	-24	-30	-36	0	-6	-12	-18	-24	-30	-36	-6	-12	-18	-24	-30	0	-6	-12	-18	-24	-30
	nsion, T 314:8																						
	e strain, min 1		-24	-30	-36	0	-6	-12	-18	-24	-30	-36	-6	-12	-18	-24	-30	0	-6	-12	-18	-24	-30
test ter	mp @ 1.0 mm	/min, °C																					
																			-				1//

City/location	Max. pavement temp. (°C)	Min. air temp. (°C)
Irbid	58.9	- 1.7
Mafraq	61.6	-6.0
Amman airport	61.3	-2.6
Queen A. airport	62.5	-4.3
Ghor Safi	66.0	-0.4
Maan	61.8	-7.2
H-4 Irwaished	64.8	- 5.2
H-5 Safawi	65.3	-4.5
Aqaba	66.5	2.2

Journal of Pavement Engi

ng 14:2, 116-124, DOI: 10.1080/10298436.2011.65069

Binder Selection

SuperPave binder selection process

Steps

- 1. Climate analysis
- 2. Reliability analysis
- 3. Select the suitable **<u>Base PG grade</u>**
- □ PG grade bumping (Fine-tuning)

181

<section-header><section-header><section-header><section-header><section-header><section-header><section-header>

1. Climate a	nalysis :			5
By Pavement	: Temperature:			
The designed temperature	r would need to kn e.	ow design pav	ement	
Unit of Time	Max. Pavement Temp. at 20mm	Min. Pavement Temp.		
Daily (Five Years)	52.2	-6		
				184

Air temperature data

Table 3. Maximum and minimum air temperatures for different weather stations in Jordan.

			Max. air temp.			Min. air temp.			
City/location	Latitude (°)	Longitude (°)	Mean	SD	Max. 7-day air temp.	Mean	SD	Min. temp	
Irbid	32.54	35.85	39.5	1.5	37.0	- 1.1	1.2	-4.0	
Mafraq	32.36	36.25	40.1	1.7	39.9	-4.2	2.4	-9.0	
Amman airport	31.98	35.98	39.7	1.7	39.4	-1.6	1.5	- 5.0	
Queen A. airport	31.71	35.96	40.7	1.7	40.7	- 3.7	1.7	-7.0	
Ghor Safi	31.03	35.46	45.4	1.7	44.2	2.0	2.4	-2.4	
Maan	30.16	35.78	40.0	1.5	39.8	-4.6	2.1	-10.4	
H-4 Irwaished	32.5	38.2	42.4	1.7	43.3	-4.4	1.9	-8.0	
H-5 Safawi	32.2	37.13	42.4	1.3	43.8	-3.3	1.8	-7.2	
Aqaba	29.55	35.01	44.7	1.5	44.6	1.9	1.6	0.6	

	Latitude (°) Longitude (°)		Max. air temp.			Min. air temp.		
City/location		Longitude (°)	Mean	SD	Max. 7-day air temp.	Mean	SD	Min. temp.
Irbid	32.54	35.85	39.5	1.5	37.0	-1.1	1.2	-4.0
Mafraq	32.36	36.25	40.1	1.7	39.9	-4.2	2.4	-9.0
Amman airport	31.98	35.98	39.7	1.7	39.4	-1.6	1.5	-5.0
Queen A. airport	31.71	35.96	40.7	1.7	40.7	-3.7	1.7	-7.0
Ghor Safi	31.03	35.46	45.4	1.7	44.2	2.0	2.4	-2.4
Maan	30.16	35.78	40.0	1.5	39.8	-4.6	2.1	-10.4
H-4 Irwaished	32.5	38.2	42.4	1.7	43.3	-4.4	1.9	-8.0
H-5 Safawi	32.2	37.13	42.4	1.3	43.8	-3.3	1.8	-7.2
Aqaba	29.55	35.01	44.7	1.5	44.6	1.9	1.6	0.6

		50% Reliability		98% Reliability			
City/location	Max. pavement temp. (°C)	Min. air temp. (°C)	PG selection	Max. pavement temp. (°C)	Min. air temp. (°C)	PG selection	
Irbid	58.9	- 1.7	64-10	58.9	- 1.7	64-10	
Mafraq	61.6	-6.0	64-10	61.6	-6.0	64-10	
Amman airport	61.3	-2.6	64-10	61.3	-2.6	64-10	
Queen A. airport	62.5	- 4.3	64-10	62.5	-4.3	64-10	
Ghor Safi	66.0	-0.4	70-10	66.0	-0.4	70-10	
Maan	61.8	-7.2	64-10	61.8	-7.2	64-10	
H-4 Irwaished	64.8	- 5.2	70-10	64.8	- 5.2	70-10	
H-5 Safawi	65.3	- 4.5	70-10	65.3	-4.5	70-10	
Aqaba	66.5	2.2	70-10	66.5	2.2	70-10	

SuperPave binder selection process

Reliability analysis

- The SuperPave system allows the designers to use reliability measurements to assign a degree of design risk to the high and low pavement temperatures used in selecting the binder grade.
- Reliability is defined as
 - The percent probability in a single year that the actual temperature (one-day low or seven-day average high) will not exceed the design temperatures.
- SuperPave binder selection is very flexible in that a different level of reliability can be assigned to high and low temperature grades.

2. Reliability analysis

Importance

	Min. air	temp.			
City/location	Mean	SD	Min. temp.		
Irbid	-1.1	1.2	-4.0		
Mafraq	-4.2	2.4	-9.0		
Amman airport	-1.6	1.5	-5.0		
Queen A. airport	-3.7	1.7	-7.0		
Ghor Safi	2.0	2.4	-2.4		
Maan	-4.6	2.1	-10.4		
H-4 Irwaished	-4.4	1.9	-8.0		
H-5 Safawi	-3.3	1.8	-7.2		
Aqaba	1.9	1.6	0.6		

SuperPave binder selection process

Example

□ What base PG asphalt binder grade should be selected under the following conditions:

- The seven-day maximum pavement temperature has a
 - Mean of 57 °C
 - Standard deviation of 2 °C.
- The minimum pavement temperature has a
 - mean of 6°C
 - Standard deviation of 3°C.

Reliability is 99.7%

High Temperature Grades (°C)	Low Temperature Grades (°C)
PG 46	-34, -40, -46
PG 52	-10, -16, -22, -28, -34, -40, -46
PG 58	-16, -22, -28, -34, -40
PG 64	-10, -16, -22, -28, -34, -40
PG 70	-10, -16, -22, -28, -34, -40
PG 76	-10, -16, -22, -28, -34
PG 82	-10, -16, -22, -28, -34

SuperPave binder selection process

Solution

- \Box High-temperature grade >= 57 + (2 X 2).... >= 61 °C
- □ Low-temperature grade =< -6 (2 X 3).... =< -12 °C

The closest standard PG asphalt binder grade that satisfies the two temperature grades is PG 64–16

High Temperature Grades (°C)	Low Temperature Grades (°C)
PG 46	-34, -40, -46
PG 52	-10, -16, -22, -28, -34, -40, -46
PG 58	-16, -22, -28, -34, -40
PG 64	-10, -16, -22, -28, -34, -40
PG 70	-10, -16, -22, -28, -34, -40
PG 76	-10, -16, -22, -28, -34
PG 82	-10, -16, -22, -28, -34

SuperPave binder selection process

- 3. Base PG grade selection
- □ Select the suitable Base PG grade based on the determined
 - 1. Determine the 7-day maximum pavement temperature
 - 2. 1-day minimum pavement temperature
 - 3. Desired level of reliability (50% vs 98%)

			Max. air temp.			Min. air	temp.	
City/location	Latitude (°)	Longitude (°)	Mean	SD	Max. 7-day air temp.	Mean	SD	Min. temp.
Irbid	32.54	35.85	39.5	1.5	37.0	-1.1	1.2	-4.0
Mafraq	32.36	36.25	40.1	1.7	39.9	-4.2	2.4	-9.0
Amman airport	31.98	35.98	39.7	1.7	39.4	-1.6	1.5	-5.0
Queen A. airport	31.71	35.96	40.7	1.7	40.7	-3.7	1.7	-7.0
Ghor Safi	31.03	35.46	45.4	1.7	44.2	2.0	2.4	-2.4
Maan	30.16	35.78	40.0	1.5	39.8	-4.6	2.1	-10.4
H-4 Irwaished	32.5	38.2	42.4	1.7	43.3	-4.4	1.9	-8.0
H-5 Safawi	32.2	37.13	42.4	1.3	43.8	-3.3	1.8	-7.2
Aqaba	29.55	35.01	44.7	1.5	44.6	1.9	1.6	0.6

	:	50% Reliability		98% Reliability			
City/location	Max. pavement temp. (°C)	Min. air temp. (°C)	PG selection	Max. pavement temp. (°C)	Min. air temp. (°C)	PG selection	
Irbid	58.9	- 1.7	64-10	58.9	- 1.7	64-10	
Mafraq	61.6	-6.0	64-10	61.6	-6.0	64-10	
Amman airport	61.3	- 2.6	64-10	61.3	-2.6	64-10	
Queen A. airport	62.5	-4.3	64-10	62.5	-4.3	64-10	
Ghor Safi	66.0	-0.4	70-10	66.0	-0.4	70-10	
Maan	61.8	-7.2	64-10	61.8	-7.2	64-10	
H-4 Irwaished	64.8	- 5.2	70-10	64.8	- 5.2	70-10	
H-5 Safawi	65.3	-4.5	70-10	65.3	- 4.5	70-10	
Aqaba	66.5	2.2	70-10	66.5	2.2	70-10	

PG grade bumping

Engineering Judgment

- Use judgment in the number of hightemperature grade "bump-ups."
- One could come up with a scenario in which a base climate grade of PG 64-22 is bumped three or four times resulting in a PG 82-22 to be specified for a project.
 - This would probably be overkill and would result in a very expensive binder,
 - which also may be difficult to place.
- □ Therefore, limits should be used
 - A maximum <u>two-grade increase</u>
 - to no higher than a PG 76 is usually sufficient in all but the most extreme conditions.

				Max. air temp. Min. air te				
City/location	Latitude (°) Longitu	Latitude (°) Longitude (°)	Mean	SD	Max. 7-day air temp.	Mean	SD	Min. temp
Irbid	32.54	35.85	39.5	1.5	37.0	-1.1	1.2	-4.0
Mafraq	32.36	36.25	40.1	1.7	39.9	-4.2	2.4	-9.0
Amman airport	31.98	35.98	39.7	1.7	39.4	-1.6	1.5	-5.0
Queen A. airport	31.71	35.96	40.7	1.7	40.7	-3.7	1.7	-7.0
Ghor Safi	31.03	35.46	45.4	1.7	44.2	2.0	2.4	-2.4
Maan	30.16	35.78	40.0	1.5	39.8	-4.6	2.1	-10.4
H-4 Irwaished	32.5	38.2	42.4	1.7	43.3	-4.4	1.9	-8.0
H-5 Safawi	32.2	37.13	42.4	1.3	43.8	-3.3	1.8	-7.2
Aqaba	29.55	35.01	44.7	1.5	44.6	1.9	1.6	0.6

	:	50% Reliability		98% Reliability			
City/location	Max. pavement temp. (°C)	Min. air temp. (°C)	PG selection	Max. pavement temp. (°C)	Min. air temp. (°C)	PG selection	
Irbid	58.9	- 1.7	64-10	58.9	- 1.7	64-10	
Mafraq	61.6	-6.0	64-10	61.6	-6.0	64-10	
Amman airport	61.3	-2.6	64-10	61.3	-2.6	64-10	
Queen A. airport	62.5	-4.3	64-10	62.5	-4.3	64-10	
Ghor Safi	66.0	-0.4	70-10	66.0	-0.4	70-10	
Maan	61.8	-7.2	64-10	61.8	-7.2	64-10	
H-4 Irwaished	64.8	- 5.2	70-10	64.8	- 5.2	70-10	
H-5 Safawi	65.3	- 4.5	70-10	65.3	-4.5	70-10	
Aqaba	66.5	2.2	70-10	66.5	2.2	70-10	

