

HMA Mix Design

Asphalt Mixtures Types

What is Asphalt Mixture

Asphalt mixture is combination of asphalt cement and aggregate that will give long-lasting performance as part of the pavement structure

Asphalt Cement/Binder About 4% to 6% of total mix by weight About 10% to 14% of total mix by volume Aggregates About 94% - 96% of total mix by weight About 75%-85% of total mix by volume

(a)

(c)

.

(d)

HMA Mix Design

Asphalt Mixtures Types

Mixture phases

Field

A loose asphalt mixture typically refers to a mix of asphalt and aggregate materials that has not undergone the compaction process.

Phase Diagram

Terms

Total volume of the compacted specimen
Total volume of the loose mixture
Volume of air voids
Volume of asphalt binder
Volume of effective asphalt binder
Volume of absorbed asphalt binder
Volume of aggregate
Effective volume of aggregate
Voids in the Mineral Aggregate

Volumetric analysis Procedures

The measurements needed for Volumetric analysis are:

- 1. Measure the bulk specific gravities of the coarse aggregate and fine aggregate
 - > (AASHTO T 85 or ASTM C 127) and of the fine aggregate (AASHTO T 84 or ASTM C 128).
- 2. Measure the specific gravity of the asphalt cement
 - > (AASHTO T 228 or ASTM D 70) and of the mineral filler (AASHTO T 100 or ASTM D 854).
- 3. Calculate the bulk specific gravity of the aggregate combination (Blend) in the paving mixture.
- 4. Measure the maximum specific gravity of the loose paving mixture
 - > (ASTM D 2041 or AASHTO T209).
- 5. Measure the bulk specific gravity of the <u>compacted</u> paving mixture
 - > (ASTM D 1188/D 2726 or AASHTO T166).

42

Volumetric analysis Procedures

The calculations needed for Volumetric analysis are:

- 6. Calculate the effective specific gravity of the aggregate.
- 7. Calculate the maximum specific gravity at other asphalt contents.
- 8. Calculate the asphalt absorption of the aggregate.
- 9. Calculate the effective asphalt content of the paving mixture.
- **10.** Calculate the percent voids in the mineral aggregate (VMA) in the compacted paving mixture.
- 11. Calculate the percent air voids (AV) in the compacted paving mixture.
- 12. Calculate the percent voids filled with asphalt (VFA) in the compacted paving mixture

HMA Mix Design

Asphalt Mixtures Volumetric

Specific Gravity for asphalt binder

Asphalt Binder Specific Gravity (G_b) ASTM D70 Summary of Test Method > The sample is placed in a calibrated pycnometer > The pycnometer and sample are weighed, then the remaining volume is filled with water. > The filled pycnometer is brought to the test temperature and weighed. The density of the sample is calculated from its mass and the mass of water displaced by the sample in the filled ۶ pycnometer **C**alculate the S.G. as indicated in the following equ: > $S.G = \frac{(C-A)}{[(B-A) - (D-C)]}$, Where ٠ A = mass of pycnometer (plus stopper), ✤ B = mass of pycnometer filled with water, C = mass of pycnometer partially filled with asphalt D = mass of pycnometer plus asphalt plus water. \blacktriangleright Density = S.G $\times \gamma_w$, Where γ_w = density of water at the test temperature (At 25 °C, γ_w = 997.0 kg/m³) * Binder specific gravity typically ranges from **1.00 to 1.05**

47

xes	1978
;b) =	2.723
se) =	2.779
(a) =	0.75%
ib) =	1.019
A DESCRIPTION OF A DESC	(es b) = e) = a) = b) =

HMA Mix Design

Asphalt Mixtures Volumetric

Specific Gravity for Aggregates

Aggregate Specific Gravity

Apparent Specific Gravity, G_{sa}

□ The ratio of the mass in air of a unit volume of an impermeable material at a stated temperature to the mass in air of equal density of an equal volume of gas-free distilled water at a stated temperature

55

Aggregate Specific Gravity Bulk Specific Gravity, G_{sh} > The ratio of the mass in air of a unit volume of a permeable material to the mass in air of equal density of an equal volume of gas-free distilled water at a stated temperature. **Volumes Considered Masses Considered Aggregate particle** Aggregate particle (oven dry condition) + $G_{sb} = \frac{Dry Mass}{Bulk Vol}$ 1.000 g/cm3 water permeable voids Bulk Volume = solid volume + Aggregate water permeable voids "SSD" Level water permeable voids $G_{sb} = \frac{W_s}{(V_s + V_{pp})\gamma_w} = \frac{M_s}{(V_s + V_{pp})\rho_w}$ tinteractive.org/reference-desk/testing/aggregate-tests/coarse-aggregate-specific-gravity/

Aggregate Specific Gravity

Effective Specific Gravity, G_{se}

- □ Aggregate absorb some asphalt cement (AC).
 - > G_{sa} assumes <u>ALL</u> permeable pores absorb AC ($V_{ap} = V_{pp}$)
 - > G_{sb} assumes <u>NO</u> permeable pores absorb AC ($V_{ap} = 0$)

Neither is correct

ggreg	gate Specific Gravity for <u>blend</u>
ggreg	gate Blend
<u>A single</u> require	e aggregate source is generally unlikely to meet gradation ments for Portland cement or asphalt concrete mixes
Thus requ	s, blending of aggregates from two or more sources would be lired to satisfy the specifications.
A <u>trial-a</u> proport	and-error process is generally used to determine the tions
The bas	sic equation for blending is
$\triangleright P_i =$	$a \times Ai + B \times Bi + C \times Ci$; where
*	P_i = Percent blend materials passing sieve size I
*	A_i , B_i , C_i = Percent of aggregates from stockpiles A, B, C passing sieve size I
*	a,b, and c = devimal fraction by weight of aggregates from stockpiles A, B, C used in the blend
	* a + b+ c = 1.0
	ggreg A single require \rightarrow Thus require \rightarrow Thus require \rightarrow Thus require \rightarrow Thus require \rightarrow Thus require \rightarrow Thus require \rightarrow Thus require \rightarrow Thus require \rightarrow Thus require \rightarrow Thus \rightarrow P _i = \Rightarrow \Rightarrow \Rightarrow

Aggregate Specific Gravity for blend Composite G_{sb} for blend The average G_{sb} can be calculated as follows: $G_{sb} = \frac{P_1 + P_2 + P_3 + \cdots + P_n}{\frac{P_1}{G_1} + \frac{P_2}{G_2} + \frac{P_3}{G_3} + \cdots + \frac{P_n}{G_n} +}, \text{ where}$ $\Rightarrow G_{sb} = \text{bulk (dry) specific gravity of the aggregate}$ $\Rightarrow P_1, P_2, P_3, P_n = \text{Percentages by weight of aggregates 1, 2, through n}$ $\Rightarrow G_1, G_2, G_3, G_n = P_1, P_2, P_3, P_n = \text{Percentages by weight of aggregates 1, 2, through n}$

					6.0 malla ma	Medium	Elmo	And the	ne o	btained co	mbined grading was as follows: -			
			Agg. 1	Agg. 2	Agg.	-Fine	Agg.	SIAVE	No	(Size	% Passing by	Weight		
Aggreg	ute Ident	ification		(Basalt)		Mgg. (M)	lxed)	mm)		(0120)	Combined Grading	Specifi	cation Li	mits
1.99.69			1 3,000	2 4,00	مدسية	المحسمية	i.eli	1"		(25)	100	<u></u>	100	
				(باولت)	1	(1	(بالي	3/4"		(19)	99.9	90	-	1.00
	est Nam	e	100000000000000000000000000000000000000	-141419191919191919191919191919191919191	Test Resu	lt	deninina el casto	1/2"		(125)	84.8	71	1/126	90
- Sieve Analy	sis: -			% Pa	ssing by W	/eight		1/2	-	(12.5)	77.4	EC	7.01	80
	1"	(25)	100	100	100	100	100	3/8"		(9.5)	72.4	50	/	80
	3/4"	(19)	99	100	100	100	100	No. 4		(4.75)	47.1	35	-	56
	1/2"	(12.5)	1	54	100	100	100	No. 8		(2.36)	29.9	23	-	38
Sieve	3/8"	(9.5)	1	11	80	98	100			10.050	16.8	13		27
Number	No. 4	(4.75)	1	-P-I	2	4	86	No. 20	0	(0.850)	10.8	10		477
(Size, mm):	No. 20	(0.850)	1	1	2	3	47	No. 50	0	(0.300)	10.0	5		17
	No. 50	(0.300)	1	1	1	3	27	No. 80	0	(0.180)	7.8	4	-	14
	No. 80	(0.180)	1	1	1	2	21	No. 24	00	(0.075)	5.2	2	-	8
	No. 200	(0.075)	0.4	0.6	0.9	1.9	13.5	NO. 20	00	[0.073]	JII			
- Specific	Bulk SG.	(Oven Dry)	2.748	2.741	2.736	2.718	2.703							
Gravity	Bulk SG.	(SSD)	2.797	2.791	2.788	2.782	2.773							
(SG):	Apparen	it SG.	2.890	2.886	2.887	2.903	2.907	Specific Gravity of Combined Aggre	egat	e	(Gsb) =	2	.723	-
- Water Abs	orption, 9	6	1.8	1.8	1.9	2.3	2.6	specific cruticy of continuition of			(Geo) =	2	779	
								tive Specific Gravity of Combined A	vggr	egate	[03E] =			
								rbed Asphalt by Weight of Aggrega	ite		(Pba) =	0	.75%	
					1	n nearas	tions %							
	Hot	Bin Compon	ents		TOL B	IL STORES	cionis, ze							
- Coarse Ag	g. 1	(Hot Bin 1)		1 Ayar	_	7.0								
- Coarse Ag	g. 2	(Hot Bin 2)		2 Ayer		18.0								
- Medium /	gg.	(Hot Bin 3)		عدسية		21.0								
- Medium-I	ine Agg.	(Hot Bin 4)		ä.		21.0								
- Fine Agg.		(Hot Bin 5)		a.e.b		33.0								
- Total				الجموع	2	100.0								

HMA Mix Design

Asphalt Mixtures Volumetric

Specific Gravity for Asphalt Mixture

Bulk Specific Gravity Gmb

HMA Mix Design

Asphalt Mixtures Volumetric

Specific Gravity for Asphalt Mixture

Theoretical Maximum Specific Gravity G_{mm}

Specific Gravity for Asphalt Mixture

Example

- □ If the specific gravity of the asphalt cement used in a sample of asphalt concrete mix is 1.01, the maximum specific gravity of the mix is 2.50, and the mix contains 6.5% by weight of asphalt cement, Determine
 - $\succ\,$ The effective specific gravity of aggregates ($\rm G_{se})$
 - \succ The maximum specific gravity (G_{mm}) at 5.5%, 6.0%, 7.0%, and 7.5% binder content

Specific Gravity for Asphalt Mixture

Solution

- □ If the specific gravity of the asphalt cement used in a sample of asphalt concrete mix is 1.01, the maximum specific gravity of the mix is 2.50, and the mix contains 6.5% by weight of asphalt cement, Determine
 - $\succ\,$ The effective specific gravity of aggregates ($\rm G_{se})$
 - \succ The maximum specific gravity (G_{mm}) at 5.5%, 6.0%, 7.0%, and 7.5% binder content

$$G_{mm \ @Pb} = \frac{100}{\frac{P_s}{G_{se}} + \frac{P_b}{G_b}}$$

Phase Diagram Terms MASS (g) $M_a = 0$ AIR M_{mb} Total weight of the compacted specimen EFF. BINDE Total weight of air voids (= ZERO) Ma Mb Mb Total weight of asphalt binder Total weight of effective asphalt binder Mbe Total weight of absorbed asphalt binder Mba M_{ba} BIN Ms Total weight of aggregate Vse Effective volume of aggregate Mmb M.

104

Mixture volumetric parameters

Percent Air Voids [P_a or V_a or VTM]

Defined as

The total volume of the small pockets of air between the coated aggregate particles throughout a compacted paving mixture,

Expressed as

Percent of the total volume of the compacted paving mixture

$$>V_a = 100 \times \frac{G_{mm} - G_{mb}}{G_{mm}}$$

Mixture volumetric parameters Percent Binder Effective P_{be} The functional portion of the asphalt binder that coats the aggregate in the asphalt mixture but is <u>not</u> absorbed into the aggregate

Expressed as

A percentage of the total mix mass

$$\square P_{be} = 100 \times \frac{M_{be}}{M_{mb}}$$
$$\square P_{be} = P_b - \frac{P_{ba}}{100} \times P_S$$

HMA Mix Design

Asphalt Mixtures Volumetric

Volumetric Analysis procedures

120

Volumetric analysis Procedures

The measurements needed for Volumetric analysis are:

- 1. Measure the bulk specific gravities of the coarse aggregate and fine aggregate
 - > (AASHTO T 85 or ASTM C 127) and of the fine aggregate (AASHTO T 84 or ASTM C 128).
- 2. Measure the specific gravity of the asphalt cement
 - > (AASHTO T 228 or ASTM D 70) and of the mineral filler (AASHTO T 100 or ASTM D 854).
- 3. Calculate the bulk specific gravity of the aggregate combination (Blend) in the paving mixture.
- 4. Measure the maximum specific gravity of the loose paving mixture
 - ➤ (ASTM D 2041 or AASHTO T209).
- 5. Measure the bulk specific gravity of the compacted paving mixture
 - > (ASTM D 1188/D 2726 or AASHTO T166).

Volumetric analysis Procedures

The calculations needed for Volumetric analysis are:

- 6. Calculate the effective specific gravity of the aggregate.
- 7. Calculate the maximum specific gravity at other asphalt contents.
- 8. Calculate the asphalt absorption of the aggregate.
- 9. Calculate the effective asphalt content of the paving mixture.
- **10.** Calculate the percent voids in the mineral aggregate (VMA) in the compacted paving mixture.
- 11. Calculate the percent air voids (AV) in the compacted paving mixture.
- 12. Calculate the percent voids filled with asphalt (VFA) in the compacted paving mixture

Example -

□ Calculate all volumetric quantities based on the following laboratory results

	Specific	Gravity	Mix Composition		
Material		Bulk	Percent by Mass of Total Mix	Percent By Mass of Total Aggregat	
Asphalt Cement Coarse Aggregate Fine Aggregate Mineral Filler	1.030(G _b)	2.716(G ₁) 2.689(G ₂)	5.3 (P _b) 47.4(P ₁) 47.3(P ₂)	5.6 (P _b 50.0(P ₁ 50.0(P ₂	

Solution

Asphalt Absorption

$$P_{ba} = 100 \times \frac{G_{se} - G_{sb}}{G_{sb}G_{se}} \times G_b$$

	Specific	Gravity	Mix Con	nposition
Material		Bulk	Percent by Mass of Total Mix	Percent By Mass of Total Aggregat
Asphalt Cement Coarse Aggregate Fine Aggregate Mineral Filler	1.030(G _b)	2.716(G ₁) 2.689(G ₂)	5.3 (P _b) 47.4(P ₁) 47.3(P ₂)	5.6 (P) 50.0(P) 50.0(P)
Paving Mixture Bulk specific gravity of Maximum specific grav	f compacted pavin vity of paving mix	ng mixture samj ture sample, G _r	ple, G _{mb} = 2.44 _{nm} = 2.535	2

$$P_{ba} = 100 \times \frac{2.761 - 2.703}{2.703 \times 2.761} \times 1.030 = 100 \times \frac{0.058}{7.463} \times 1.030 = 0.8$$

Colution	Ni ta O				
Solution	Mixture Components	Specific	Gravity	Mix Con	nosition
Effective Asphalt Content of a Pavina Mixture	Material	opecine	Bulk	Percent by Mass of Total Mix	Percent By Mass of Total Aggregate
Pha	Asphalt Cement Coarse Aggregate Fine Aggregate Mineral Filler	1.030(G _b)	2.716(G ₁) 2.689(G ₂)	5.3 (P _b) 47.4(P ₁) 47.3(P ₂)	5.6 (P _b) 50.0(P ₁) 50.0(P ₂)
$P_{be} = P_b - \frac{1}{100} \times P_s$	Paving Mixture Bulk specific gravity of Maximum specific grav	compacted pavin ity of paving mixt	g mixture samı ure sample, Gr	ole, G _{mb} = 2.44 _{1m} = 2.535	2
$P_{be} = 5.3 - \frac{0.8}{100} \times 94.7 = 4.5$					
					131

Solution

Percent VMA in Compacted **Paving Mixture**

$$VMA = 100 - \frac{G_{mb} \times P_s}{G_{sb}}$$

lution	Mixture Components				
		Specific	Gravity	Mix Corr	position
ercent VMA in Compacted avina Mixture	in Compacted 'e Material Material Material Material Material Percent by Mass of Total Mix A Asphalt Cement Coarse Aggregate Fine Aggregate Fine Aggregate Coarse Aggregate Coa	Percent By Mass of Total Aggregate			
	Asphalt Cement Coarse Aggregate Fine Aggregate Mineral Filler	1.030(G _b)	2.716(G ₁) 2.689(G ₂)	5.3 (P _b) 47.4(P ₁) 47.3(P ₂)	5.6 (P _b) 50.0(P ₁) 50.0(P ₂)
$VMA = 100$ $G_{mb} \times P_s$	Paving Mixture Bulk specific gravity of Maximum specific grav	compacted pavir vity of paving mixt	ng mixture sam ture sample, G _r	ple, G _{mb} = 2.44 _{nm} = 2.535	2
$VMA = 100 - \frac{G_{sb}}{G_{sb}}$					
$VMA = 100 - \frac{2.442 \times 94.7}{2.703} = 100 - 85.6 = 14$	1.4				

Solution

$$VFA = 100 \times \frac{VMA - V_a}{VMA}$$

olution	Mixture Components				nposition Percent By Mass of Total Aggregate 5.6 (P _b) 50.0(P ₁) 50.0(P ₂)
oracion		Specific (Gravity Mix Composition Percent Percent by Mass By Mass Bulk of Total of Total		
Percent VFA in Compacted Mixture	Material		Bulk	Percent by Mass of Total Mix	Percent By Mass of Total Aggregate
$VFA = 100 \times \frac{VMA - V_a}{VDA + V_a}$	Asphalt Cement Coarse Aggregate Fine Aggregate Mineral Filler	1.030(G _b)	2.716(G ₁) 2.689(G ₂)	Mix Aggregate 5.3 (P _b) 5.6 (P _b) 47.4(P ₁) 50.0(P ₁) 47.3(P ₂) 50.0(P ₂)	
VMA	Paving Mixture Bulk specific gravity of Maximum specific grav	compacted pavin ity of paving mixt	ig mixture samj ure sample, Gr	ple, G _{mb} = 2.44 _{nm} = 2.535	2
$VFA = 100 \times \frac{14.4 - 3.7}{14.4} = 74.3$					

134

Asphalt Mixtures Volumetric

Discussion on volumetric properties

Volumetric analysis

Phase Diagram

138

Air voids parameter Effect of air voids It should be emphasized that the design level of air voids (4 percent) is the level desired after several years of traffic. This design air void range will normally be achieved in the field if > The mix is designed at the correct compactive effort > The percent air voids <u>after construction is no more than 8 percent</u>. $V_{a} \int \int V_{binder} V_{bin$

VMA Parameter Factors affecting VMA <u>– Minor factors</u>

D Binder type

Stiffer binders whether neat or modified, can increase the resistance to the compaction in the laboratory or in the field

Binder quantity

> Asphalt binder will add lubrication to the mix and increase the ability of the aggregate structure to consolidate.

Small changes in binder content, at or near the design binder content, typically will have minimal effect on the compacted VMA

VMA Parameter

Example : Effects of aggregate NMAS on VMA

- As the Nominal Maximum Aggregate Size of the mix decreases, the surface area of the total aggregate structure increases.
 - > Therefore, the percentage of binder necessary to adequately coat the particles increases.
 - Since the target air voids (V_a) typically remains the same
 - The VMA must increase to allow sufficient room for the additional asphalt binder.

Surface area of a sphere = $4\pi r^2$

8 - 1" Spheres Surface area per sphere = 3.14 in² 64 - 1/2" Spheres Surface area per sphere = 0.79 in²

Total Surface area = 25.1 in² Total Surface area = 50.3 in²

The specified minimum values for VMA at the design air void content of four percent are a function of nominal maximum aggregate size.

VMA Parameter	Nominal Maximum	м	linimum V	MA, percer	1t
Example : Effects of aggregate NMAS on VMA	Particle Size ^{1,2}	De	sign Air V	oids, Perce	nt ³
	mm	in.	3.0	4.0	5.0
	1.18	No. 16	21.5	22.5	23.5
The specified minimum values for	2.36	No. 8	19.0	20.0	21.0
VMA at the design air void content	4.75	No. 4	16.0	17.0	18.0
of four percent are a function of	9.5	36	14.0	15.0	16.0
nominal maximum aggregate size.	12.5	1/2	13.0	14.0	15.0
	19.0	34	12.0	13.0	14.0
	25.0	1.0	11.0	12.0	13.0
	37.5	1.5	10.0	11.0	12.0
	50	2.0	9.5	10.5	11.5
	63	2.5	9.0	10.0	11.0
	NOTES: 1. Standard Testing P 2. The nom than the 3. Interpola (VMA) fo	Specificatio urposes, AS inal maximu first sieve to te minimum r design air	on for Wire TM E11 (A im particle retain mo voids in th void values	Cloth Siev ASHTO M size is one re than 10 e mineral a between th	es for 92) size larger percent. iggregate tose listed.

			spin		•••	i ulun	Nominal Maximum	M	linimum V	MA, percent			
							Particle Size ^{1,2}	Design Air Voids, Percent ³					
							mm	in,	3.0	4.0	5.0		
							1.18	No. 16	21.5	22.5	23.5		
Marshall Method Criteria	Light T Surface	fraffic ² & Base	Medium Surface	Traffic ³ & Base	Heavy	Traffic ³ & Base	2.36	No. 8	19.0	20.0	t s.0 23.5 21.0 18.0 16.0 15.0 14.0 13.0 12.0 11.5 11.0 es for 92) size large percent. ggregate ose listed		
	Min	Max	Min	Max	Min	Max	4.75	No. 4	16.0	17.0	18.0		
Compaction, number of blows each end of specimen	3	5	5	D	7	5	9.5	⅔	14.0	15.0	16.0		
Stability ² , N (Ib.)	3336 (750)	1	5338 (1200)		8006 (1800)		12.5	1/2	13.0	14.0	15.0		
Flow ^{2,4,5} , 0.25 mm (0.01 in.)	8	18	8	16	8	14	19.0	34	12.0	13.0	14.0		
Percent Air Voids ⁷	3	5	3	5	3	5	25.0	10	11.0	12.0	13.0		
Percent Voids in Mineral Aggregate (VMA) ⁶			See Ta	ble 7.3			37.5	1.5	10.0	11.0	12.0		
Percent Voids Filled With Asphalt (VFA)	70	80	65	78	65	75	50	2.0	9.5	10.5	11.5		
							63	2.5	9.0	10.0	11.0		
							NOTES: 1. Standard Testing P 2. The nom than the 3. Interpola (VMA) fo	Specificatio urposes, AS inal maximu first sieve to te minimum r design air	on for Wire TM E11 (A im particle retain mo voids in th void values	Cloth Siev ASHTO M size is one re than 10 te mineral a between th	es for 92) size large percent. ggregate tose listed		

Dust to binder ratio (Dust Proportion) Parameter

Definition

□ The dust to binder ratio is <u>the ratio</u> of the percentage of aggregate passing the 0.075-mm (No. 200) sieve($P_{0.075}$) to the effective binder (P_{be}).

➤Dust ratio = P_{0.075}/P_{be}

□ This property addresses the workability of asphalt mixtures.

 $A \underline{low} P_{0.075} / P_{be}$ often results in a tender mix,

- Tender mix lacks cohesion and is difficult to compact in the field because it tends to move laterally under the roller.
- Mixes tend to stiffen as the P_{0.075} increases, but too much will also result in a tender mix

➤A <u>mix</u> with a high P_{0.075}/P_{be} will often exhibit a multitude of small stress cracks during the compaction process (lack sufficient durability), called check-cracking

Table 4.15:	JOB MIX R BINDER AN	EQURIEMEN D WEARING	TS TO BITUM COURSES	INOUS			
Property	Heavy 1	raffic	Media Traff	um-Light fic	- Table 4.14: JOI BIT	3 MIX REQUIREMENTS UMINOUS BASE COURS	FOR JE
	Binder	Wearing	Binder	Wearing	Property	Heavy Traffic	Medium-Light Traffic
Marshall Stability at 60°C (kg)	900	1000	800	900	Marshall Stability at 60°C (Kg)	750	700
Flow (mms)	2 - 3.5	2 - 3.5	2 - 4	2 - 4	Flow (nma)	2 - 3.5	2 - 4
Volds in Mineral Aggregate (VMA)	13 (-1)	14 (-1)	13 (-1)	14 (-1)	Voids in Mineral Aggregate (VMA)	12(min)	12(mi n)
Air Voids (%)	4 - 7	4 - 6	3 - 5	3 - 5	Air Voids (%)	1 - 8	4 - 7
Stiffness (Kg/mm)	500 (Min)	500 (Mia)	400 (Min)	400 (Min)	Filler Bit Ratio	1.2 - 1.5	1.0 - 1.4
* Loss of stability (%)	25 (max)	25 (max)	25 (max)	25 (max)	Stiffness (Kg/mm) *Loss of Stability (%	300(min) b) 25 (Max)	250 (min) 25 (Max)

