

Cutback asphalt grading									
	Rapid-Curing T	уре							
Grade	Grade Kinematic viscosity, 60 ° C, centistokes (mm ² /S)								
	Min.	Max.	м	edium-Curing	<u></u> туре				
RC-70	70	140	Grade	Grade Kinematic viscosity, 60° C,					
RC-250	250	500		Min	Max				
RC-800	800	1600	M0.20	NIIII.					
RC-3000	3000	6000	MC-30	30	60				
			MC-70	70	140				
			MC-250	250	500		Slow -Curing Ty	rpe	
			MC-800	800	1600	Grade	Kinematic vis	cosity, 60°C,	
			MC-3000	3000	6000		centistokes	s (mm ² /S)	
							Min.	Max.	
						SC-70	70	140	
						SC-250	250	500	
						SC-800	800	1600	
						SC-3000	3000	6000	

Requirements for Cutback Asphalt (Rapid-Curing Type) ASTM D2028

Desimation	RC-70		RC-250		RC-800		RC-3000	
Designation	Min	Max	Min	Max	Min	Max	Min	Max
Kinematic viscosity at 60°C [140°F], mm ² s	70	140	250	500	800	1600	3000	6000
Flash point (Tag open-cup), °C [°F]			27 [80]		27 [80]		27 [80]	
Distillation test:								
Distillate, volume percent of total distillate to 360°C (680°F).								
to 190°C [374°F]	10							
to 225°C [437°F]	50		35		15			
to 260°C [500°F]	70		60		45		25	
to 316°C [600°F]	85		80		75		70	
Residue from distillation to 360°C 680°F],	55		65		75		80	
percent volume by difference								
Tests on residue from distillation:								
Viscosity at 60°C [140°F], Pa · s ^A	60	240	60	240	60	240	60	240
Ductility at 25°C [77°F], cm	100		100		100		100	
Solubility, %	99.0		99.0		99.0		99.0	
Water, %		0.2		0.2		0.2		0.2

Requirements for Cutback Asphalt (Medium-Curing Type)

ASTM D2027

Desimation	MC-30		MC-70		MC-250		MC-800		MC-3000	
Designation	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
Kinematic viscosity at 60°C [140°F], mm ^{2/} s	30	60	70	140	250	500	800	1600	3000	6000
Flash point (Tag open-cup), °C [°F]	38 [100]		38 [100]		66 [150]		66 [150]		66 [150]	
Distillate test:										
Distillate, volume percent of total distillate to 360°C [680°F]:										
to 225°C [437°F]		35		25		20				
to 260°C [500°F]	30	75	10	70	5	55		40		15
to 316°C [600°F]	75	95	65	93	60	90	45	85	15	75
Residue from distillation to 360°C [680°F],	50		55		67		75		80	
percent volume by difference										
Tests on residue from distillation:										
Viscosity at 60°C [140°F], Pa · s ^{A, †}	30	120	30	120	30	120	30	120	30	120
Ductility at 25°C [77°F], cm	100		100		100		100		100	
Solubility in trichloroethylene, %	99.0		99.0		99.0		99.0		99.0	
Water, %		0.2		0.2		0.2		0.2		0.2

^A Instead of viscosity of the residue, the specifying agency, at its option, can specify penetration 100 g: 5 s at 25°C [77°F] of 120 to 300 for Grades MC-30, MC-70, and MC-250, and 120 to 250 for MC-800 and MC-3000. However, in no case will both be required. [†] Editorially corrected to match originally published D2027–97.

7

Requirements for Cutback Asphalt (Slow-Curing Type) ASTM D2026

TABLE 1 Requirements for Cutback Asphalt (Slow-Curing Type)

NOTE 1—If the ductility at 25°C [77°F] is less than 100, the material will be acceptable if its ductility at 15°C [59°F] is more than 100.

SC-	SC-70		SC-250		SC-800		SC-3000	
Min	Max	Min	Max	Min	Max	Min	Max	
70	140	250	500	800	1600	3000	6000	
66 [150]		79 [175]		93 [200]		107 [225]		
10	30	4	20	2	12		5	
99.0		99.0		99.0		99.0		
400	7000	800	10 000	2000	16 000	4000	35000	
50		60		70		80		
100		100		100		100		
	0.5		0.5		0.5		0.5	
	SC- Min 70 66 [150] 10 99.0 400 50 100 	SC-70 Min Max 70 140 66 [150] 10 30 99.0 400 7000 50 100 0.5	SC-70 SC- Min Max Min 70 140 250 66 [150] 79 [175] 10 30 4 99.0 99.0 400 7000 800 50 60 100 100 0.5	SC-70 SC-250 Min Max Min Max 70 140 250 500 66 [150] 79 [175] 10 30 4 20 99.0 99.0 400 7000 800 10 000 50 60 100 100 0.5 0.5	SC-70 SC-250 SC- Min Max Min Max Min 70 140 250 500 800 66 [150] 79 [175] 93 [200] 10 30 4 20 2 99.0 99.0 99.0 400 7000 800 10 000 2000 50 60 70 100 100 100 0.5 0.5	SC-70 SC-250 SC-800 Min Max Min Max Min Max 70 140 250 500 800 1600 66 [150] 79 [175] 93 [200] 10 30 4 20 2 12 99.0 99.0 99.0 400 7000 800 10 000 2000 16 000 50 60 70 100 100 0.5 0.5 0.5 0.5	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	

JORDAN PETROLEUM REFINERY CO. LTD

Specification for Cutback Asphalt (Rapid-Curing Type) RC – 250

S.N	Characteristics	Test Method	Control Limits	
1	Kinematic Viscosity @ 60 °C	cSt.	ASTM D445 ASTM D2170	250 - 500
2	Flash Point (T.O.C)	°F	ASTM D1310	Min. 80
3	Distillation :		ASTM D 402	
3.1	Percent Recovered up to 190 °C	Volume %		Report
3.2	Percent Recovered up to 225°C	Volume %		Min. 35
3.3	Percent Recovered up to 260 °C	Volume %		Min. 60
3.4	Percent Recovered up to 316 °C	Volume %		Min. 80
3.5	Residue from Distillation to 360 °C	Volume %		Min. 65
4	Tests on Residue from Distillation			
4.1	Penetration @ 25 °C, 100g, 5sec.	0.1 mm	ASTM D5	80 - 120
4.2	Ductility @ 25 °C, 5cm / min.	cm	ASTM D113	Min. 100
4.3	Solubility in Trichloroethylene	Mass %	ASTM D2042	Min. 99.0
5	Water Content	Volume %	ASTM D95	Max. 0.2

Emulsified asphalt grading

Asphalt Emulsion Webinar Series Recordings

Registration:

You can register for FREE for this webinar series using this link:

http://www.asphaltinstitute.org/training/webinars/asp halt-emulsion-webinar-series-recordings/

Session 1 – Introduction, Chemistry Instructor: Chris Lubbers, KRATON Polymers Register online to view the recorded webinar Session 2 – Storage, handling & sampling testing, selecting the right grade Instructor: Laurand Lewandowski, PRI Asphalt Technologies Register online to view the recorded webinar Session 3 – Surface treatment (chip seals, slurry, micro, etc.) Instructor: Mark Ishee, Ergon Asphalt & Emulsions, Inc. Register online to view the recorded webinar Session 4 – Emulsion aggregate mixtures Instructor: Arlis Kadrmas, BASF Corporation Register online to view the recorded webinar Session 5 – Asphalt pavement recycling, miscellaneous applications Instructor: Keith Davidson, McAsphalt Industries Ltd. Register online to view the recorded webinar

Jordanian Specifications for highway and bridge construction

۸/أ- الوجه اللاصق (Tack Coat) :

– تتم هذه الأعمال وفقًا" لمواصفات انشاء الطرق والجسور لعام ١٩٩١ . – تتم أعمال الوجه اللاصق بحيث يكون الاسفلت المستعمل من نوع (RC 250) أو (RC 800) وحسب طلب المهندس المشرف وبالمعدل الذي يتطلب واقع العمل وحسب نوع السطح المزاد رشه .

– الوجه التأسيسي (Prime Coat) :

٦/٦- يجب أن يكون الاسفلت من نوع (MC-70) على أن يرش بمعدل(٥٧, ٠-٠, ٢) كغم/م٢ حسب نوعية السطح المر اد رشه وبموجب تعليمات المهندس المشرف .

۲- الوجه الختامي (Seal Coat) :

١/٧ - تستعمل حصمة ناتج تكسير حجر جبري أو جرانيتي أو بازلتي وبالخواص المبينة في جدول رقم (٥) المرفق , وحسب مواصفات انشاء الطرق والجسور لعام ١٩٩١

٢/٧ - يجب استعمال موزع حصمة ميكانيكي ورشاش أسفلت ميكانيكي .

٣/٧ - يستعمل أسفلت أو (RC 800) أو (RC 250) ومعدل الرش حسب ما ورد في جدول رقم (٥) المرفق .

Specifications for highway and bridge construction					
Tack Coat	−أ/^ الوجه اللاصق (Tack Coat) :				
	 - تتم هذه الأعمال وفقا لمواصفات انشاء الطرق والجسور لعام ١٩٩١ . - تتم أعمال الوجه اللاصق بحيث يكون الاسفلت المستعمل من نوع (RC 250) أو المقر من المستعمل من نوع (RC 800) وحسب طلب المهندس المشرف وبالمعدل الذي يتطلب واقع العمل وحسب نوع الحراد رشه . - يجب تنظيف السطح للمراد رشه . - يجب تنظيف السطح جدا" بواسطة الضاغطة الهوائية (الكمبريسور) قبل رش الوجه اللاصق ولا يدفع سعر لهذا العمل وانما يكون محملا على أعمال الخلطة الاسفلتية . - يمنع الرش في الأجواء الماطرة وذات الرياح الشديدة أو أو العواصف الرملية اللاصق ولا يدفع سعر لهذا العمل وحات الرياح الشديدة أو أو العواصف الرملية . - يكون معدل رش الوجه اللاصق ار ١٩٠ . - يكون معدل رش الوجه اللاصق ار ١٩٠ . - يكون معدل رش الوجه اللاصق ار ١٩٠ . - ينم عادة الوجه اللاصق وعلى نوع السطح المراد رشه وحسب تعليم. - تمنع حركة السير على الأسطح المرشوشة . - تتم هذه الأعمال وفقا" لمواصفات النشاء الطرق والجسور لعام ١٩٩١ على ألمين المقرف . - تمنع حركة السير على الأسطح المرشوشة . - تتم هذه الأعمال وفقا" لمواصفات الثماء الاسفلتية بساعتين على الأقل على أن يتم المهز المقرف الخلطة الاسفلتية بساعتين على الأقل على أن يتم المؤتين جميع الأسطح المرشوشة . - يتم مذه الأعمال وفقا" لمواصفات النشاء الطرق والجسور لعام ١٩٩١ . - تتم مذه الأعمال وفقا لمواصفات النشاء المادة في نفس اليوم ولا يسمح بوضع خلطة النينية مرشاتية على هذه الأسطح المرشوشة . 				

