

Highway Materials

References

- AASHTO Guide for Design of Pavement Structures. American Association of State Highway and Transportation Officials. Washington, D.C.
- Nicholas Garber and Lester Hoel, Traffic & Highway Engineering, 5th Edition.. Cengage Learning, 2015
- Michael S. Mamlouk and JohnP, Zaniewski, Traffic & Highway Engineering, 3th Edition.. Pearson, 2011
- Yang Huang, Pavement Analysis and Design, 1993
- A. T. Papagiannakis and Eyad A Masad, **Pavement Design and Materials**, 2008
- https://pavementinteractive.org/

Introduction

Pavement Design Methodologies

■ Empirical

- Based on the results of experiments or experience
	- e.g statistical models from road tests
- This means that the relationship between design inputs (e.g., loads, materials, layer configurations and environment) and pavement failure were arrived at through experience, experimentation or a combination of both.
- For example
	- California Bearing Ratio Method
	- American Association of State Highway and Transportation Officials (AASHTO 1993) Method

8 and 2010 and 2010

AASHO Road Test

Test conditions

- One rainfall zone
- One temperature zone
- One subgrade (A-6/ A-7-6 [Clay])

17

AASHO Road Test

Materials

- One asphalt layer
	- ¾" surface course
	- >1 " binder course
- One PCC layer
- Four base materials

Main experiment

Well-graded crushed limestone

Special studies

- Well-graded uncrushed gravel
- Bituminous-treated base (special studies)
- Cement-treated base

AASHTO Pavement Design ■ 1961 (Interim Guide) ■ 1972 ■ 1986 Refined material characterization Version included in Huang (1993) ■ 1993 More on rehabilitation More consistency between flexible, rigid designs ■ 2002 Mechanistic-empirical approach (AASHTO ME) Method Development

Design steps

29

Design Concept

■ The objective of the design using the AASHTO method is to determine

 a flexible pavement Structural Number (SN) adequate to carry the projected design traffic, then the determined SN is used to determine the required layer thickness

Design steps

■ Step -1:

▶ Determine the Structural Number (SN) for pavement layers

- $\mathbf{\hat{S}}$ SN₁ = The structure number require to protect base layer
- \bullet SN₂ = The structure number require to protect subbase layers
- $\mathbf{\hat{S}}$ SN₃ = The structure number require to protect (roadbed) subgrade layer

\blacksquare Step -2 :

 \triangleright Estimate the required layers thickness based on SNs values

Step -1: Determination of Pavement Layers Structural Numbers (SNs)

Design Inputs

36

AASHTO 1993 design method

Design Considerations

AASHTO 1993 design method

Design Considerations

A. Design Variables:

• Criteria considered for each type of road surface design procedure in the Guide.
 B. Performance Criteria:

• Uses specified boundary conditions **AASHTO 1993 design method**
 Design Considerations
 A. Design Variables:

• Criteria considered for each type of road surface design procedure in the Guildeboundary
 B. Performance Criteria:

• User-specified boundar C. Material Properties for each type of road surface design procedure in the Guillamous.

A. Design Variables:

Criteria considered for each type of road surface design procedure in the Guillamous.

B. Performance Criteria **AASHTO 1993 design method**

Design Considerations

A. Design Variables:

• Criteria considered for each type of road surface design procedure in the Guilear Characteristics:

• User-specified boundary conditions for pavem

-
- -
- -

Performance Period

38

Design Variables Performance Period

• Definition:

• The time a pavement structure lasts before needing rehabilitation.

• Key Considerations:

• Minimum Performance Period:

- Shortest time a pavement should last (e.g., 10 years before major rehabilitation).
- Affected by public perception, funds, and engineering constraints.
- Maximum Performance Period:
	- Longest practical time a pavement is expected to last (e.g., 15-20 years).
	- Impacted by environmental factors, surface disintegration, and loss of serviceability.
- Designer's Role:
	- Set realistic performance bounds based on experience, policy, and maintenance practices.

Analysis Period

40

Design Variables Analysis Period

• Definition:

• The time frame for which a design strategy is analyzed, analogous to "design life."

• Historical Context:

- Traditionally, pavements were designed for a 20-year analysis period
- Modern designs recommend longer analysis periods for better evaluation of long-term strategies and life-cycle costs. Anglock Douted

Traffic

42

Design Variables **Traffic**

• Key Basis:

• Design procedures rely on *cumulative* 18-kip Equivalent Single Axle Loads (ESAL) during the analysis period.

• Traffic Conversion:

- Mixed traffic is converted into 18-kip ESAL units using equivalency values provided in the Guide.
- Will be discussed later
- Analysis Period:
	- If no rehabilitation or resurfacing is planned, total traffic is calculated for the entire analysis period.

Reliability

44

Reliability -
 Reliability

■ The AASHTO Definition of reliability is:

→ "The reliability of the pavement design-performance process is the probability to

pavement section designed using the process will perform satisfactorily ov **Example 13**
 Example 10

The AASHTO Definition of reliability is:
 \triangleright "The reliability of the pavement design-performance process is the probability that a

pavement section designed using the process will perform s pavement section designed using the process will perform satisfactorily over the traffic and environmental conditions for the design period." ■ AASHTO uses the reliability concept to account for design uncertainties. ■ For example, \triangleright A designer may specify that there should only be a 5 % chance that the design does not last a specified number of years (e.g., 20 years). This is the same as stating that there should be a 95 % chance that the design does last the specified number of years (e.g., 20 years).

Reliability

- The level of reliability to be used for design should increase with the increase of
	- The volume of traffic
	- Difficulty of diverting traffic
	- Public expectation of availability

Reliability

 S_o = Overall standard deviation of the traffic prediction and performance prediction

- This variable defines how widely the two basic design inputs, traffic and performance, can vary.
- For instance,
	- Traffic may be estimated at 2,000,000 ESALs over 20 years.
	- However, actual traffic may turn out to be 2,500,000 ESALs over 20 years due to unanticipated population growth.

Similarly, pavement design factors may turn out to be different than estimated

 \bullet The more these values vary, the higher the value of S_o. .

Step to determine Reliability parameters **Steps**

- Functional Classification:
	- \triangleright Define whether the facility is rural or urban.
- Reliability Level:
	- \triangleright Select a reliability level based on Table 2.2.
	- \triangleright Higher reliability requires more pavement structure.
- Standard Deviation (S_o):
	- \triangleright Choose a value representative of local conditions.
	- AASHO Road Test values:
		- \div Rigid pavements: S_o = 0.35.
		- \div Flexible pavements: S_o = 0.45.

Reliability Concept Problem

You are designing a principal arterial road in a rural area with a traffic loading (W_{18}) of 15 million ESALs and a reliability level of 95%. Based on the AASHO Road Tests, determine the reliability factor (Z_R) and the standard deviation (S_0) for both rigid and flexible pavements.

Reliability Concept

Solution

1. Find Z_R :

- From the standard normal table:
	- For $R = 95\%$, $Z_R = 1.645$.
- 2. Use S_0 Values from AASHO Road Test:
	- Rigid Pavements: $S_0 = 0.35$.
	- Flexible Pavements: $S_0 = 0.45$.

B. Performance Criteria

Serviceability

56

Pavement performance

Serviceability-Performance concept

- The serviceability-performance was developed to quantify pavement performance
- The serviceability of a pavement

 \triangleright is defined as its ability to serve the type of traffic which use the facility

■ The serviceability is express in terms of the Present Serviceability Index (PSI)

Pavement performance

Serviceability-Performance concept

■ The PSI is obtained from measurement of pavement

>Roughness

❖ [Reflect the functional performance]

\triangleright The extent & type distress

- Which were measured in terms of extent of cracking, patching, and rut depth for flexible pavements
- ❖ [Reflect the structural performance]
- The evaluation is systematic but subjective

Factors Affecting Resilient Modulus (Mr) of Subgrade Soils

- Moisture Content:
	- Increased moisture leads to reduced stiffness and Mr
- Freeze-Thaw Cycles:
	- Mr can reduce by 50–80% during thaw periods due to frost action.
- Stress Levels:
	- High stress reduces soil elasticity, affecting Mr values

Roadbed Soils (Subgrade Material)

Determination of Effective Roadbed Soil Resilient Modulus

Example 3

■ The table show the roadbed soil resilient modulus Mr for each month estimated from laboratory results correlating Mr with moisture content.

■ Determine

The effective resilient modulus of the subgrade

C. Material Properties for Structural Design

Layer Coefficients concept

Layer Coefficients concept

Examples of Layer Coefficients

- Layer coefficients are Derived from Material Properties (Resilient Modulus)
- Materials with high stiffness, like asphalt concrete, have higher coefficients compared to granular layers.

88

89

• Example

- Asphalt Concrete (AC): 0.40–0.44
- Granular Base: 0.11–0.14
- Granular Subbase: 0.05–0.10

88 and the set of the

Layer Coefficients concept

Factors Affecting Layer Coefficients

- Material Type:
	- Asphalt, granular base, stabilized soil, etc.
- Environmental Factors:
	- Moisture levels
	- Drainage quality

C. Material Properties for Structural Design 90 Layer Coefficients for Asphalt Concrete Surface Course

90

Asphalt Concrete Surface Course Layer Coefficient

- Figure provides a chart that may be used

to estimate the structural layer

coefficient of a dense-graded asphalt

concrete surface course based on its

elastic (resilient) modulus (E_{AC}) at 68°F.

 Caution is Rec to estimate the structural layer coefficient of a dense-graded asphalt
concrete surface course based on its $\begin{bmatrix} 1 & 1 \\ 2 & 3 \end{bmatrix}$ concrete surface course based on its elastic (resilient) modulus (E_{AC}) at 68°F.
- Caution is Recommended for modulus $\begin{bmatrix} \vdots \\ \vdots \end{bmatrix}$ $\begin{bmatrix} 0.3 \\ 0.3 \end{bmatrix}$ values above 450,000 psi.
- Note:
	- Higher modulus asphalt concretes are $\begin{bmatrix} \dfrac{\square}{\square} \ \heartsuit \end{bmatrix}$ 0.1 stiffer and more resistant to bending.
	- However, they are also more susceptible $\begin{bmatrix} 5 \\ 5 \end{bmatrix}$ to thermal and fatigue cracking.

C. Material Properties for Structural Design

Layer Coefficients for

Granular Base Layers

92

Granular Base Layers Layer Coefficient

- Quality of the Base
	- \triangleright Determined in terms of the layer coefficient (a2).

■ Definition of a_2 : :

- \triangleright measures the **relative effectiveness** of the subbase material as a structural component of the pavement.
- \triangleright Converts the actual thickness of the base into an equivalent Structural Number (SN).
- \triangleright Reflects the strength contribution of the material in pavement design.

■ How to get a_2

Figure 2.6 provides a chart that may be used to estimate a structural layer coefficient (a2) from one of four different laboratory test results on a granular base material, including the base resilient modulus (EB) .

C. Material Properties for Structural Design

Layer Coefficients for

Granular SubBase Layers

98

Granular Base Layers Layer Coefficient

- Quality of the SubBase
	- \triangleright Determined in terms of the layer coefficient (a3).

■ Definition of a_3 : :

- \triangleright measures the **relative effectiveness** of the subbase material as a structural component of the pavement.
- \triangleright Converts the actual thickness of the base into an equivalent Structural Number (SN).
- \triangleright Reflects the strength contribution of the material in pavement design.

■ How to get a_3

Figure 2.7 provides a chart that may be used to estimate a structural layer coefficient (a2) from one of four different laboratory test results on a granular base material, including the base resilient modulus (EB) .

