

Granular Base Layers

Layer Coefficient

Quality of the SubBase

> Determined in terms of the layer coefficient (a3).

■ Definition of a₃:

- > measures the **relative effectiveness** of the subbase material as a structural component of the pavement.
- Converts the actual thickness of the base into an equivalent Structural Number (SN).
- > Reflects the **strength contribution** of the material in pavement design.

■ How to get a₃

Figure 2.7 provides a chart that may be used to estimate a structural layer coefficient (a2) from one of four different laboratory test results on a granular base material, including the base resilient modulus (EB).

D. Pavement Structural Characteristics

Drainage

Introduction

- Impact of Water Infiltration:
 - > Weakening of base material and subgrade.
 - ► Loss of strength in base and roadbed soils.
 - ➤Increased deformation and cracking.
- What is Drainage in Pavements?
 - > The process of removing water from the pavement structure to maintain its performance and durability.
- Objectives of Pavement Drainage
 - > Provide rapid removal of free water from the pavement structure.
 - > Minimize moisture variations in base and subgrade layers.
 - > Enhance pavement durability and performance.

Drainage

Modifying the structural layer coefficient.

The general definitions of the different levels of drainage quality

Quality of Drainage	Water Removed Within*
Excellent	2 hours
Good	1 day
Fair	1 week
Poor	1 month
Very poor	(water will not drain)

*Time required to drain the base layer to 50% saturation.

106

Drainage

Modifying the structural layer coefficient.

Recommended m_i values for different levels of drainage quality

Quality of Drainage	Percent of Time Pavement Structure Is Exposed to Moisture Levels Approaching Saturation			
	Less Than 1%	1 to 5%	5 to 25%	Greater Than 25%
Excellent	1.40-1.35	1.35-1.30	1.30-1.20	1.20
Good	1.35 - 1.25	1.25 - 1.15	1.15 - 1.00	1.00
Fair	1.25 - 1.15	1.15 - 1.05	1.00 - 0.80	0.80
Poor	1.15 - 1.05	1.05 - 0.80	0.80 - 0.60	0.60
Very poor	1.05 - 0.95	0.95 - 0.75	0.75 - 0.40	0.40

Example 2

- A flexible pavement for an urban interstate highway is to be designed using the 1993 AASHTO guide.
- It is estimated that it takes about a week for water to be drained from within the pavement and the pavement structure will be exposed to moisture levels approaching saturation or 30% of the time f
- Determine

> The appropriate drainage coefficient m_i .

108

Solution

- A flexible pavement for an urban interstate highway is to be designed using the 1993 AASHTO guide.
- It is estimated that it takes about a week for water to be drained from within the pavement and the pavement structure will be exposed to moisture levels approaching saturation or 30% of the time

Determine

➤The appropriate drainage coefficient m_i.

Table 19.5 Definition of Drainage Quality		
Quality of Drainage	Water Removed Within*	
Excellent	2 hours	
Good	1 day	
Fair	1 week	
Poor	1 month	
Very poor	(water will not drain)	

*Time required to drain the base layer to 50% saturation.

Quality of Drainage	Percent of Time Pavement Structure Is Exposed to Moisture Levels Approaching Saturation				
	Less Than 1%	1 to 5%	5 to 25%	Greater Than 25%	
Excellent	1.40-1.35	1.35-1.30	1.30-1.20	1.20	
Good	1.35 - 1.25	1.25 - 1.15	1.15 - 1.00	1.00	
Fair	1.25 - 1.15	1.15 - 1.05	1.00 - 0.80	0.80	
Poor	1.15 - 1.05	1.05 - 0.80	0.80 - 0.60	0.60	
Very poor	1.05 - 0.95	0.95 - 0.75	0.75 - 0.40	0.40	

Design steps

Design steps

Step A: Determine Structural Number (SN) for pavement layers

112

Example No.1

Part A: Determine SN for different pavement layers .

116

SN determenation

Example 2.

- A flexible pavement for an urban interstate highway.
- Cumulative ESAL = $2x \ 10^6$
- Reliability = 99
- Standard deviation (So) = 0.49
- Initial PSI = 4.5
- Terminal PSI = 2.5
- △PSI = 2

- Resilience modulus of asphalt concrete = 450,000 psi.
- Base course: CBR = 100 , Mr = 31,000 psi
- Subbase course: CBR = 22, Mr = 13,500 psi
- Subgrade: CBR = 6

≻Mr = 9,000 PSi

Determine SN for different pavement layers .

Design steps

Step B: Selection of Layer thickness

Design steps Step B: Selection of Layer thickness Procedures

Step-2: **Procedures** Step 2.5 : Check the minimum thickness requirement for the surface course and base course Called the selected values • D_1^{**} • D_2^{**} Table 19.9 AASHTO-Recommended Minimum Thicknesses of Highway Layers Minimum Thickness (in.) Traffic, ESALs Asphalt Concrete Aggregate Base Less than 50,000 1.0 (or surface treatment) 4 50,001-150,000 2.0 4 150,001-500,000 2.5 4 500,001-2,000,000 3.0 6 2,000,001-7,000,000 3.5 6 Greater than 7,000,000 4.0 6

Example

Part B: Estimate the required layers thickness based on SNs values.

136

Pavement layer thickness

Example 2

- A flexible pavement for an urban interstate highway.
- ESAL = 2x 10⁶
- Reliability = 99
- Standard deviation (So) = 0.49
- Initial PSI = 4.5
- Terminal PSI = 2.5
- △PSI = 2
- It is estimated that it takes about a week for water to be drained from within the pavement
- The pavement structure will be exposed to moisture levels approaching saturation for 30% of the time.

- Resilience modulus of asphalt concrete = 450,000 psi.
- Base course: CBR = 100 , Mr = 31,000 psi
- Subbase course: CBR = 22, Mr = 13,500 psi
- Subgrade: CBR = 6

≻Mr = 9,000 PSi

Determine the thickness of pavement layers .

Equivalent Single Axle Loads (ESALs)

■ Step 1.1 :

- Determine SN for different layers
 - ✤ SN₁ = 2.6
 - ✤ SN₂ = 3.8
 - SN₃ = 4.4

