

Definition

■ Traffic loads refer to the forces applied to pavement by vehicles in motion.

3

Traffic Loads

Impact

- Pavement deterioration is caused by the interacting damaging effects of traffic and the environment.
- Traffic loads, primarily those from heavy trucks, cause stresses/strains in pavement structures, whose effects accumulate over time, resulting in pavement deterioration,
- Such as rutting

Traffic Loads

Quantification criteria

Pavement Damage depends on weight distribution

Truck traffic loads and their impact on pavements are Quantify using :

-
-
-
-
-

7

Axle and Tire

Configuration

Tire Configuration

Single Tire

Tire Configuration

Dual Tire

18

Tire Configuration

Wide Base Tire

- Description: Extra wide tire designed to replace duals for weight savings.
- Typical Load per Tire: 60

- The collected traffic data must be summarized in a format that is suitable for direct input into the pavement design process, ensuring accurate traffic loading estimates for long-term pavement performance analysis.
- Available Approaches:
- ESALs appraoch (AASHTO 1986/1993 Pavement Design Approach) Load spectra (NCHRP 1-37A Pavement Design Approach)

AASHTO 1993 Method

Equivalent Single Axle Load (ESAL)

55

Equivalent Single Axle Loads (ESALs) Damage by each axle alone Damage from this vehicle [All quivalent Single Axle Loads (ESALs)

Damage by each axle alone

ESALs

Damage from this vehicle [All

Damage from this vehicle [All

ESALs=1.179 × [Damage from SAL]

ESALs=1.179 ESALs=1.179

AASHTO 1993 Method

Equivalent Single Axle Load (ESAL)

 (FE_i) : load equivalency factor for axle category

60

Factors Affecting LEF

■ Axle Load:

 \triangleright Higher loads cause exponentially more damage.

■ Axle Configuration:

Single axles concentrate more load, causing higher damage. Tandem and tridem axles distribute load, reducing damage. **Factors Affecting LEF**

■ Axle Load:

→ Higher loads cause exponentially more damage.

■ Axle Configuration:

→ Single axles concentrate more load, causing higher damage.

→ Frandem and tridem axles distribute load, red

■ Pavement Type:

Flexible and rigid pavements respond differently to axle loads.

- Thicker, stronger pavements can resist higher loads.
- \triangleright Pavement thickness or structural capacity (SN)
- \triangleright The terminal conditions at which the pavement is considered failed (P_t)

 \bullet p_t : Terminal serviceability index, representing pavement condition at the end of its design life.

(FEi): load equivalency factor for axle category i

Tables

- Steps to Determine Load Equivalency Factor (LEF) from Table
-
-
- 3. Identify the Terminal Serviceability Index (pt).
-
-
-
-

(F_{Ei}): load equivalency factor for **axle category i (LEFs)**

Tandem Axles

 \triangleright P_t of 2.5

Different SN

68

Example 5

Determination of LEFs for different axles

■ Determine the LEFs for the following the following axle loads, assume SN = 5 and P_1 = 2.5

One Single axle (10,000 lb/axle) (10 kips)

One Tandem Axle (10,000 lb/axle) (10 kips)

Example 5

Determination of LEFs for different axles

■ Determine the LEFs for the following the following axle loads,

\triangleright SN = 5 and Pt = 2.5, Single axle (10,000 lb/axle)

AASHTO 1993 Method

Equivalent Single Axle Load (ESAL)

 T_f : Truck factor

72

Key Components for Truck Factor Determination

- Axle Load :
- Weight carried by each axle of the truck.
- Axle Configuration:
- Single, tandem, or tridem axles distribute weight differently.

■ Load Equivalency Factor (LEF):

Relative pavement damage caused by axle loads compared to an 18,000-lb axle.

■ Traffic Volume:

 \triangleright Number of trucks passing over the design lane daily.


```
76
```


86 and the state of the state of

Cumulative ESALS determinations

inputs

- ESAL_i : ESAL for axle category i
- AADT_i: First year annual average daily traffic for axle category i.
- (T): The percentage of trucks in the ADT
- \blacksquare (G_{it}): Growth rate factor for a given growth rate j and design period t.
- \blacksquare (F_d) = Design lane factor
- \blacksquare (FE_i): load equivalency factor for axle category
- \blacksquare (T_f): Truck factor

87

88 and the set of the

Cumulative ESALS determinations

Inputs

 $AADT_i$ (i = for each axle category)

91

(T): The percentage of trucks in the AADT

- Represents the proportion of truck traffic in the total vehicle count.
- A critical input for estimating the impact of heavy vehicles on pavement damage.

 Γ

(T): The percentage of trucks in the AADT

If actual traffic data are not available,

Table 6 .9 can be used as a guide to determine the distribution of ADTT on different classes of highways in the United States .

Cumulative ESALS determinations 96 **Inputs** (G_{jt}) : Growth rate factor for a given growth rate j and design period t.

Traffic Growth Factor (Gjt)

Formula for Traffic Growth Factor

- The AASHTO design guide recommend the use of traffic over the entire design period
- To determine the total growth factor

$$
\geqslant (G_{jt})=\frac{(1+j)^t-1}{t}
$$

 \triangleright t is the design period (Usually 20 years)

Cumulative ESALS determinations **Inputs** Design lane factor (F_d)) and the state \mathcal{L}

100

Design lane factor (Fd)

- The initial daily traffic is in two directions over all traffic lanes
- Design lane Factors:
- \triangleright Adjustments made to traffic data to account for the uneven distribution of traffic:
	- \triangleright Between opposing directions of travel (**Directional Factor**).
	- \triangleright Across multiple lanes in the same direction (**Lane Factor**).
- Why is it Needed?
- Accurate Load Distribution:
- Cost-Efficient Design:
	- \triangleright Avoids overdesigning lanes that carry less traffic.

Design lane factor (F_d)) Why is it Needed?

■ Accurate Load Distribution:

 \triangleright Helps engineers focus on the critical lane with the heaviest traffic and load concentration.

■ Cost-Efficient Design:

 \triangleright Avoids overdesigning lanes that carry less traffic.

102

Design lane factor (Fd)

- The design lane adjustments is performed
	- \triangleright Between opposing directions of travel (Directional Factor).
	- Across multiple lanes in the same direction (Lane Factor).

\blacksquare Fd = D x L

 $P(D)$: D is the directional distribution factor $E(L)$: L is the lane distribution factor

Directional Distribution Factor (D)

Traffic Distribution

- D represent percentage of trucks traffic traveling in one direction
- D usually assumed to be 0.5 unless the traffic in two directions is different

Design for worst case!!

104

Lane Distribution Factor (L)

■ Design lane:

>Lane expected to receive the severe service

- For two-lane highways,
- \triangleright The lane in each direction is the design lane, so the lane distribution factor is 100%
- For multilane highways,
- \triangleright The design lane is the outside lane

Design for worst case!!

Lane Distribution Factor (L)

For two-lane highways,

■ The lane in each direction is the design lane, so the lane distribution factor is 100%

■ Design lane:

Lane expected to receive the severe service

Example Calculation

■ Given Data:

Total AADT = 20,000 vehicles/day \triangleright Directional Factor (D) = 60% \blacktriangleright Lane Factor (L) = 80% **Example Calculation**

■ Given Data:

> Total AADT = 20,000 vehicles/day

> Directional Factor (D) = 60%

■ Solution:

■ Solution:

> Traffic in Design Direction = AADT × D = 20,000 × 0.60 = 12,000 vehicles/day

> Traffic **Example Calculation**
 Example 2018

Fote *AADT* = 20,000 vehicles/day

Place Factor (L) = 80%
 Example Factor (L) = 80%
 Example Factor (L) = 80%
 Example: Solution:

Fore in Design Direction = AADT x D = 20,000

■ Solution:

■ Interpretation:

The design lane carries 9,600 vehicles/day.

Equivalent Single Axle Loads (ESALs) for category i ■ ESAL_i = (AADT)₀ (T) (G_{rn}) (F_d) (365) (N_i) (F_{Ei}) \triangleright ESAL_i : ESAL for axle category i AADTi: First year annual average daily traffic for axle category i. \triangleright (T): the percentage of trucks in the ADT \triangleright (G_{it}): growth rate factor for a given growth rate j and design period t. \triangleright (F_d) = Design lane factor $P(N_i)$ = number of axles on each vehicle in category i \triangleright (F_{Ei}) = load equivalency factor for axle category i If the axle weight is **known**

Total ESAL Calculation for mixed traffic

■ ESAL = $\sum_{i=1}^{i=n} ESAL_i$ > ESAL : ESAL for *all vehicles* during the design period. ESALi : ESAL for axle category i n= number of truck categories

112

Total ESAL Calculation for mixed traffic

Step-2

Determine design lane factor (F_d)) and the state \mathcal{L}

■ The percent of traffic on the design lane is 45%,

 \triangleright Thus, the design lane factor (F_d) = 45%

Step-2

Determine the percentage of trucks in the ADT (T)

Passenger cars (1000 lb/axle) = 50%

2-axle single-unit trucks (6000 lb/axle) = 33%

3-axle single-unit trucks (6000 lb/axle) = 17%

Equivalent Single Axle Loads (ESALs) for category i

For 3-axle single-unit trucks (6000 lb/axle)

- $ESAL_{3-axle} single-unit trucks = (AADT)₀ (T) (G_{rn}) (F_d) (365) (T_f)$
- ESAL_{3-axle single-unit trucks} = $(12,000)$ ₀ $(17%)$ (29.78) (45%) (365) (0.264) =
- $ESAL_{3-axle} single-unit trucks = $2.6343 \times 10^6$$

■ **■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■**

Solution

Total ESAL Calculation for mixed traffic


```
المـادة٣- تكـون الاحمـال المحوريــة علـى كـل محـور مـن محـاور المركبـة كمـا
                      ِيلسي :-<sub>.</sub>
               ۲ اطنان لکل محور
                                  ٢ ـ محاور متعاقبة
                          ب۔ محاور غير قابلة للتوجيه :-
                     ۱۳ طنا
                                   ۱ ـ محور منفرد
                          ٢ ـ محور مزدوج کما يلي :-
ـ اذا كانت المسافة المحورية اقل من مترين ١٠ اطنان لكل
                                        محور
ـ اذا كانت المسافة المحورية لا تقل عن مترين ١٣ طنـا لكل
                                       محور
                       ٣ <sub>- ا</sub>لمحور الثلاثي<br>٣ - المحور الثلاثي
            ۸ اطنان لکل محور
            ۷ اطنان لکل محور
                                ٤ ـ المحور الرباعي
ەر ۷ طن لكل محور
                                  ۲ ـ محور مزدوج
```


