

Introduction to Traffic Loads

Definition

Traffic loads refer to the forces applied to pavement by vehicles in motion.

3

Traffic Loads

Impact

- Pavement deterioration is caused by the interacting damaging effects of traffic and the environment.
- Traffic loads, primarily those from heavy trucks, cause stresses/strains in pavement structures, whose effects
 accumulate over time, resulting in pavement deterioration,
- Such as rutting

Traffic Loads

Quantification criteria

Pavement Damage depends on weight distribution

Truck traffic loads and their impact on pavements are Quantify using :

- 1. Vehicle/axle speed
- 2. Number of truck axles
- 3. Configuration of these axles
- 4. Their load magnitude
- 5. Tire inflation pressure

Ах	le Con	figuration		
∎ A	xle confi	guration is defined by th	e number of	
	Axles sh	naring the same suspension	system	
	■the num	nber of tires in each axle		
	Axle/truck	Example truck configurations	Axle configurations	-
	Single		0	
	Tandem	000000	00	
	Tridem		000	
	Quad	00 0000 0 0 00	0000	-
	Five		00000	-
	Six	00 000000	000000	-
	Seven	0000000	0000000	_
	Eight		00000000	-

Tire Configuration

Single Tire

■ Typical Load per Tire: 20 - 50 kN

Tire Configuration

Dual Tire

■ Typical Load per Tire: 40 - 100 kN

18

Tire Configuration

Wide Base Tire

- Description: Extra wide tire designed to replace duals for weight savings.
- Typical Load per Tire: 60
 100 kN

FHW	A vehi	cle Weigh	class	5
	FHWA Class Type	Class Definition Axle Group		Example truck configurations
	5	Two-axle, six-tire, single-unit trucks	1	
	6	Three-axle single- unit trucks	1 and 2	
	7	Four or more axle single-unit trucks	1, 3 and 4	
	8	Four or fewer axle single-trailer trucks	1 and 2	
	9	Five-axle single- trailer trucks	1 and 2	
	10	Six or more axle single-trailer trucks	1, 2, 7 and 8	
	11	Five or fewer axle multi-trailer trucks	1	
	12	Six-axle multi- trailer trucks	1 and 2	
	13	Seven or more axle multi-trailer trucks	1, 2, 3, 4, 5, 7and 8	

- The collected traffic data must be summarized in a format that is suitable for direct input into the pavement design process, ensuring accurate traffic loading estimates for long-term pavement performance analysis.
- Available Approaches:
- ESALs appraoch (AASHTO 1986/1993 Pavement Design Approach)
 Load spectra (NCHRP 1-37A Pavement Design Approach)

AASHTO 1993 Method

Equivalent Single Axle Load (ESAL)

AASHTO 1993 Method

Equivalent Single Axle Load (ESAL)

(FE_i): load equivalency factor for axle category

nination fo	or each axle category i	
Axle/truck	Example truck configurations	Axle configurations
Single		0
Tandem	00 0 00	00
Tridem		000
Quad		0000
Five		00000
Six		000000
Seven	0000000	0000000
Eight		00000000

Factors Affecting LEF

Axle Load:

> Higher loads cause exponentially more damage.

Axle Configuration:

Single axles concentrate more load, causing higher damage.
 Tandem and tridem axles distribute load, reducing damage.

Pavement Type:

> Flexible and rigid pavements respond differently to axle loads.

Pavement Strength:

- Thicker, stronger pavements can resist higher loads.
- Pavement thickness or structural capacity (SN)
- > The terminal conditions at which the pavement is considered failed (P_t)

• pt: Terminal serviceability index, representing pavement condition at the end of its design life.

(FEi): load equivalency	y factor for axle category i
-------------------------	------------------------------

Tables

- Steps to Determine Load Equivalency Factor (LEF) from Table
- 1. Select the Pavement Type.
- 2. Check the Axle Type.
- 3. Identify the Terminal Serviceability Index (pt).
- 4. Determine the Structural Number (SN).
- 5. Determine the Axle Load (Lx).
- 6. Locate the Intersection in the Table.
- 7. Read the LEF Value.

	Pavement Structural Number (SN)								
Axle Load (kips)	1	2	3	4	5	6			
2	.0004	.0004	.0003	.0002	.0002	.000			
4	.003	.004	.004	.003	.002	.002			
6	.011	.017	.017	.013	.010	.009			
8	.032	.047	.051	.041	.034	.031			
10	.078	.102	.118	.102	.088	.080			
12	.168	.198	.229	.213	.189	.176			
14	.328	.358	.399	.388	.360	.342			
16	.591	.613	.646	.645	.623	.606			
18	1.00	1.00	1.00	1.00	1.00	1.00			
20	1.61	1.57	1.49	1.47	1.51	1.55			
22	2.48	2.38	2.17	2.09	2.18	2.30			
24	3.69	3.49	3.09	2.89	3.03	3.27			
26	5.33	4.99	4.31	3.91	4.09	4.48			
28	7.49	6.98	5.90	5.21	5.39	5.98			
30	10.3	9.5	7.9	6.8	7.0	7.8			
32	13.9	12.8	10.5	8.8	8.9	10.0			
34	18.4	16.9	13.7	11.3	11.2	12.5			
36	24.0	22.0	17.7	14.4	13.9	15.5			
38	30.9	28.3	22.6	18.1	17.2	19.0			
40	39.3	35.9	28.5	22.5	21.1	23.0			
42	49.3	45.0	35.6	27.8	25.6	27.7			
44	61.3	55.9	44.0	34.0	31.0	33.1			
46	75.5	68.8	54.0	41.4	37.2	39.3			
48	92.2	83.9	65.7	50.1	44.5	46.5			
50	112.0	102.0	79.0	60.0	53.0	55.0			

(F _{Ei}): load equivalency factor for	r <mark>axle c</mark> a	tego	ry i				
Tables	Table 19.3a	Axle Load Ec	uivalency Fac	tors for Flexi	ble Pavement	s, Single Axle	s, and p _t of 2.5
Tubles			Pa	vement Struc	xible Pavements, Single Axles, and p _t of 2.5 <i>ictural Number (SN)</i> 4 5 6 .0002 .0002 .0002 .013 .010 .009 .041 .034 .031 .102 .088 .080 .213 .189 .176 .388 .360 .342 .645 .623 .606 1.00 1.00 1.00 .147 1.51 1.55 2.09 2.18 2.30 2.89 3.03 3.27		
Axle Load Equivalency	Axle Load (kips)	1	2	3	4	5	6
Factors for	2 4	.0004 .003	.0004 .004	.0003 .004	.0002 .003	.0002 .002	.0002 .002
Flexible Pavements	6 8	.011 .032	.017 .047	.017 .051	.013 .041	.010 .034	.009 .031
➤Single Axles	10 12 14	.168	.102 .198 .358	.229	.213 .388	.189	.176 .342
P, of 2.5	16 18	.591 1.00	.613 1.00	.646 1.00	.645 1.00	.623 1.00	.606 1.00
➢ Different SN	20 22 24	1.61 2.48 3.69	1.57 2.38 3.49	1.49 2.17 3.09	1.47 2.09 2.89	1.51 2.18 3.03	1.55 2.30 3.27
	26	5.33	4.99	4.31	3.91	4.09	4.48
	30	10.3	9.5	7.9	6.8	7.0	7.8
	32	13.9	12.8	10.5	8.8	8.9	10.0
	34	18.4	16.9	13.7	11.3	11.2	12.5
	38	30.9	28.3	22.6	14.4	17.2	19.0
	40	39.3	35.9	28.5	22.5	21.1	23.0
	42	49.3	45.0	35.6	27.8	25.6	27.7
	44	61.3	55.9 68.8	44.0 54.0	34.0	31.0	33.1
	48	92.2	83.9	65.7	50.1	44.5	46.5
	50	112.0	102.0	79.0	60.0	53.0	.0002 .0002 .009 .031 .080 .176 .342 .606 1.00 1.55 2.30 3.27 4.48 5.98 7.8 10.0 12.5 15.5 19.0 23.0 27.7 33.1 39.3 46.5 55.0

(F_{Ei}): load equivalency factor for axle category i (LEFs)

Tubles			Pa	wement Structu	aral Number (S.	N)	
	Axle Load (kips)	1	2	3	4	5	6
Axie Load Equivalency	2	.0001	.0001	.0001	.0000	.0000	.0000
- · · · ·	4	.0005	.0005	.0004	.0003	.0003	.0002
Factors for	6	.002	.002	.002	.001	.001	.001
	8	.004	.006	.005	.004	.003	.003
	10	.008	.013	.011	.009	.007	.006
N Flovible Dovements	12	.015	.024	.023	.018	.014	.013
Flexible Pavements	14	.026	.041	.042	.033	.027	.024
	16	.044	.065	.070	.057	.047	.043
Tandom Ayloc	18	.070	.097	.109	.092	.077	.070
Fidhuem Axies	20	.107	.141	.162	.141	.121	.110
	22	.160	.198	.229	.207	.180	.166
D of 2 F	24	.231	.273	.315	.292	.260	.242
$P_t 012.5$	26	.327	.370	.420	.401	.364	.342
	28	.451	.493	.548	.534	.495	.470
Different CN	30	.611	.648	.703	.695	.658	.633
P Dijjereni SN	32	.813	.843	.889	.887	.857	.834
	34	1.06	1.08	1.11	1.11	1.09	1.08
	36	1.38	1.38	1.38	1.38	1.38	1.38
	38	1.75	1.73	1.69	1.68	1.70	1.73
	40	2.21	2.16	2.06	2.03	2.08	2.14
A CONTRACTOR OF THE OWNER	42	2.76	2.67	2.49	2.43	2.51	2.61
	44	3.41	3.27	2.99	2.88	3.00	3.16
	46	4.18	3.98	3.58	3.40	3.55	3.79
	48	5.08	4.80	4.25	3.98	4.17	4.49
	50	6.12	5.76	5.03	4.64	4.86	5.28

68

Example 5

Determination of LEFs for different axles

Determine the LEFs for the following the following axle loads, assume SN = 5 and P_t = 2.5

One Single axle (10,000 lb/axle) (10 kips)

One Tandem Axle (10,000 lb/axle) (10 kips)

Example 5

Determination of LEFs for different axles

Determine the LEFs for the following the following axle loads,

SN = 5 and Pt = 2.5, Single axle (10,000 lb/axle)

	Pavement Structural Number (SN)								
Axle Load (kips)	1	2	3	4	5	6			
2	.0004	.0004	.0003	.0002	.0002	.0002			
4	.003	.004	.004	.003	.002	.002			
6	.011	.017	.017	.013	.010	.009			
8	.032	.047	.051	.041	.034	.031			
10	.078	102	.118	102	.088	.080			
12	.168	.198	.229	.213	.189	.176			
14	.328	.358	.399	.388	.360	.342			
16	.591	.613	.646	.645	.623	.606			

AASHTO 1993 Method

Equivalent Single Axle Load (ESAL)

T_f: Truck factor

FHW	A vehi	cle Weigh	class	5
	FHWA Class Type	Class Definition	Axle Group	Example truck configurations
	5	Two-axle, six-tire, single-unit trucks	1	
	6	Three-axle single- unit trucks	1 and 2	
	7	Four or more axle single-unit trucks	1, 3 and 4	
	8	Four or fewer axle single-trailer trucks	1 and 2	
	9	Five-axle single- trailer trucks	1 and 2	
	10	Six or more axle single-trailer trucks	1, 2, 7 and 8	
	11	Five or fewer axle multi-trailer trucks	1	
	12	Six-axle multi- trailer trucks	1 and 2	
	13	Seven or more axle multi-trailer trucks	1, 2, 3, 4, 5, 7and 8	50000 00 00 00 00 00 00 00 00 00 00 00 0

Key Components for Truck Factor Determination

- Axle Load :
- > Weight carried by each axle of the truck.
- Axle Configuration:
- > Single, tandem, or tridem axles distribute weight differently.

■ Load Equivalency Factor (LEF):

> Relative pavement damage caused by axle loads compared to an 18,000-lb axle.

■ Traffic Volume:

> Number of trucks passing over the design lane daily.

Cumulative ESALS determinations

inputs

- ESAL_i : ESAL for axle category i
- AADT_i: First year annual average daily traffic for axle category i.
- (T): The percentage of trucks in the ADT
- (G_{jt}) : Growth rate factor for a given growth rate j and design period t.
- (F_d) = Design lane factor
- (FE_i): load equivalency factor for axle category
- (T_f): Truck factor

axle categ	gory (i)		
Axle/truck	Example truck configurations	Axle configurations	-
Single		0	_
Tandem	00 0 00	00	-
Tridem		000	-
Quad		0000	_
Five	00000-00-000	00000	
Six	00 000000	000000	_
Seven	0000000	0000000	
Eight	00000000	00000000	_
			89

Cumulative ESALS determinations

Inputs

AADT_i (i = for each axle category)

(T): The percentage of trucks in the AADT

- Represents the proportion of truck traffic in the total vehicle count.
- A critical input for estimating the impact of heavy vehicles on pavement damage.

(T): The percentage of trucks in the AADT

If actual traffic data are not available,

Table 6 .9 can be used as a guide to determine the distribution of ADTT on different classes of highways in the United States .

	Percent trucks											
	Rural systems						Urban systems					
Truck		Other	Minor	Collectors				Other	Other	Minor		
class	Interstate	Principal	Arterial	Major	Minor	Range	Interstate	Freeways	Principal	Arterial	Collectors	Range
Single-unit trucks												
2-axle, 4 tire	43	60	71	73	80	43-80	52	66	67	84	86	52-86
2-axle, 6-tire	8	10	11	10	10	8-11	12	12	15	9	11	9-1
3-axle or more	2	3	4	4	2	2-4	2	4	3	2	<1	<1-4
All single units	53	73	86	87	92	53-92	66	82	85	95	97	66-9
Multiple-unit trucks												
4-axle or less	5	3	3	2	2	2-5	5	5	3	2	1	1-5
5-axle ^b	41	23	11	10	6	6-41	28	13	12	3	2	2-2
6-axle or more*	1	1	<1	1	<1	<1-1	1	<1	<1	<1	<1	<1-1
All multiple units	47	27	14	13	8	8-47	34	18	15	5	3	3-3
All trucks	100	100	100	100	100		1.00	100	100	100	100	

Cumulative ESALS determinations Inputs (G_{jt}): Growth rate factor for a given growth rate j and design period t.

Traffic Growth Factor (Gjt)

Formula for Traffic Growth Factor

- The AASHTO design guide recommend the use of traffic over the entire design period
- To determine the total growth factor

$$\blacktriangleright(G_{jt}) = \frac{(1+j)^t - 1}{t}$$

≻j is the annual growth rate

>t is the design period (Usually 20
years)

ble 19.4	Growth I	actors						
			Ann	ual Grow	th Rate, Pe	ercent (r)		
Design Period, Years (n)	No Growth	2	4	5	6	7	8	10
1	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
2	2.0	2.02	2.04	2.05	2.06	2.07	2.08	2.1
3	3.0	3.06	3.12	3.15	3.18	3.21	3.25	3.3
4	4.0	4.12	4.25	4.31	4.37	4.44	4.51	4.6
5	5.0	5.20	5.42	5.53	5.64	5.75	5.87	6.1
6	6.0	6.31	6.63	6.80	6.98	7.15	7.34	7.7
7	7.0	7.43	7.90	8.14	8.39	8.65	8.92	9.4
8	8.0	8.58	9.21	9.55	9.90	10.26	10.64	11.4
9	9.0	9.75	10.58	11.03	11.49	11.98	12.49	13.5
10	10.0	10.95	12.01	12.58	13.18	13.82	14.49	15.9
11	11.0	12.17	13.49	14.21	14.97	15.78	16.65	18.5
12	12.0	13.41	15.03	15.92	16.87	17.89	18.98	21.3
13	13.0	14.68	16.63	17.71	18.88	20.14	21.50	24.5
14	14.0	15.97	18.29	19.16	21.01	22.55	24.21	27.9
15	15.0	17.29	20.02	21.58	23.28	25.13	27.15	31.7
16	16.0	18.64	21.82	23.66	25.67	27.89	30.32	35.9
17	17.0	20.01	23.70	25.84	28.21	30.84	33.75	40.5
18	18.0	21.41	25.65	28.13	30.91	34.00	37.45	45.6
19	19.0	22.84	27.67	30.54	33.76	37.38	41.45	51.1
20	20.0	24.30	29.78	33.06	36.79	41.00	45.76	57.2
25	25.0	32.03	41.65	47.73	54.86	63.25	73.11	98.3
30	30.0	40.57	56.08	66.44	79.06	94.46	113.28	164.4
35	35.0	49.99	73.65	90.32	111.43	138.24	172.32	271.0

98

Growth factor	Table 19.4	Growth I	actors								
Example		Annual Growth Rate, Percent (r)									
 Example For an annual growth rate 	Design Period, Years (n)	No Growth	2	4	5	6	7	8	10		
	1	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		
of 4.0% and a design	2	2.0	2.02	2.04	2.05	2.06	2.07	2.08	2.10		
noried of 20 years	3	3.0	3.06	3.12	3.15	3.18	3.21	3.25	3.31		
period of 20 years ,	4	4.0	4.12	4.25	4.31	4.37	4.44	4.51	4.64		
compute the growth	5	5.0	5.20	5.42	5.53	5.64	5.75	5.87	6.11		
	6	6.0	6.31	6.63	6.80	6.98	7.15	7.34	7.72		
tactors	8	7.0	7.45	9.90	0.14	0.00	8.05 10.26	8.92 10.64	9.49		
	9	9.0	9.75	10.58	11.03	11.49	11.98	12.49	13.58		
	10	10.0	10.95	12.01	12.58	13.18	13.82	14.49	15.94		
	11	11.0	12.17	13.49	14.21	14.97	15.78	16.65	18.53		
	12	12.0	13.41	15.03	15.92	16.87	17.89	18.98	21.38		
	13	13.0	14.68	16.63	17.71	18.88	20.14	21.50	24.52		
	14	14.0	15.97	18.29	19.16	21.01	22.55	24.21	27.97		
	15	15.0	17.29	20.02	21.58	25.28	25.15	27.15	35.05		
	10	17.0	20.01	23.70	25.84	28.21	30.84	33.75	40.55		
	18	18.0	21.41	25.65	28.13	30.91	34.00	37.45	45.60		
	19	19.0	22.84	27.67	30.54	33.76	37.38	41.45	51.16		
	20	20.0	24.30	29.78	33.06	36.79	41.00	45.76	57.28		
	25	25.0	32.03	41.65	47.73	54.86	63.25	73.11	98.35		
	30 35	30.0	40.57	56.08 73.65	66.44 00.32	79.06	94.46 138.24	113.28	164.49 271.02		
	35	55.0	49.99	75.05	90.32	111.43	150.24	172.32	2/1.02		

Cumulative ESALS determinations Inputs Design lane factor (F_d)

100

Design lane factor (Fd)

- The initial daily traffic is in two directions over all traffic lanes
- Design lane Factors:
- Adjustments made to traffic data to account for the uneven distribution of traffic:
 - Between opposing directions of travel (**Directional Factor**).
 - Across multiple lanes in the same direction (**Lane Factor**).
- Why is it Needed?
- ➤Accurate Load Distribution:
- ➤Cost-Efficient Design:
 - > Avoids overdesigning lanes that carry less traffic.

Design lane factor (F_d)

Why is it Needed?

- Accurate Load Distribution:
 - Helps engineers focus on the critical lane with the heaviest traffic and load concentration.

Cost-Efficient Design:

Avoids overdesigning lanes that carry less traffic.

102

Design lane factor (Fd) The design lane adjustments is performed Between opposing directions of travel (Directional Factor). Across multiple lanes in the same direction (Lane Factor). Fd = D x L (D): D is the directional distribution factor (L): L is the lane distribution factor

Directional Distribution Factor (D)

Traffic Distribution

- D represent percentage of trucks traffic traveling in one direction
- D usually assumed to be 0.5 unless the traffic in two directions is different

Design for worst case!!

104

Lane Distribution Factor (L)

Design lane:

>Lane expected to receive the severe service

- For two-lane highways,
- The lane in each direction is the design lane, so the lane distribution factor is 100%
- For multilane highways,
- ➤The design lane is the outside lane

No. of lanes in each direction	Percentage of 18-kip ESAL in design lane
1	100
2	80-100
3	60-80
4	50-75

Design for worst case!!

<section-header><section-header><list-item><list-item>

Example Calculation

Given Data:

Total AADT = 20,000 vehicles/day
 Directional Factor (D) = 60%
 Lane Factor (L) = 80%

■ Solution:

➤Traffic in Design Direction = AADT × D = 20,000 × 0.60 = 12,000 vehicles/day

Traffic in Design Lane = Traffic in Design Direction × L = 12,000 × 0.80 = 9,600 vehicles/day

■ Interpretation:

≻ The design lane carries 9,600 vehicles/day.

Equivalent Single Axle Loads (ESALs) for category i If the axle weight is <u>known</u> ESAL_i = $(AADT)_0 (T) (G_{rn}) (F_d) (365) (N_i) (F_{Ei})$ ESAL_i : ESAL for axle category i AADT_i: First year annual average daily traffic for axle category i. (T): the percentage of trucks in the ADT (G_{jt}): growth rate factor for a given growth rate j and design period t. (F_d) = Design lane factor (N_i) = number of axles on each vehicle in category i (F_{Ei}) = load equivalency factor for axle category i

Total ESAL Calculation for mixed traffic

■ ESAL = $\sum_{i=1}^{i=n} ESAL_i$ > ESAL : ESAL for <u>all vehicles</u> during the design period. > ESAL_i : ESAL for axle category i > n= number of truck categories

112

Total ESAL Calculation for mixed traffic

Vahiala Catagony, ELIMA Classification	ESAL for Vehicle Category									
venicle Calegory, FHWA Classification	AADT	Т	G _m	F _d	T _f (/ vehicle)		ESAL			
Passenger Cars and small trucks										
2axle, 4tire vans motorhomes, etc										
2-axle 6 tire single units										
3 axle single unit										
4 axle single unit						i I				
4-or-less-axle multi unit						365				
5 axle multi unit										
6-or-more-axle double unit						i i				
5-axle or less, multi-unit						i i				
6-axle, multi-unit										
7-or-more-axle, multi-unit										
	Total ES	AL		•	-		0.00E+00			

Step-1	Table 19.4	Growth I	actors						
				Ann	ual Grow	th Rate, Pe	ercent (r)		
If the expected annual	Design Period, Years (n)	No Growth	2	4	5	6	7	8	10
traffic growth rate is 19/	1	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
trainc growth rate is 4%	2	2.0	2.02	2.04	2.05	2.06	2.07	2.08	2.10
for all vehicles determine	3	3.0	3.06	3.12	3.15	3.18	3.21	3.25	3.31
for all verticies, accertaine	4	4.0	4.12	4.25	4.31	4.37	4.44	4.51	4.64
the design ESAL, given a	5	5.0	5.20	5.42	5.53	5.64	5.75	5.87	6.11
	6	6.0	6.31	6.63	6.80	6.98	7.15	7.34	7.72
design period of 20 years	8	7.0	9.59	0.21	0.14	0.00	8.05 10.26	8.92 10.64	9.49
	9	9.0	9.75	10.58	11.03	11.49	11.98	12.49	13.58
■ (G _m) = 29.78	10	10.0	10.95	12.01	12.58	13.18	13.82	14.49	15.94
- (- m)	11	11.0	12.17	13.49	14.21	14.97	15.78	16.65	18.53
	12	12.0	13.41	15.03	15.92	16.87	17.89	18.98	21.38
	13	13.0	14.68	16.63	17.71	18.88	20.14	21.50	24.52
	14	14.0	15.97	18.29	19.16	21.01	22.55	24.21	27.97
	15	15.0	17.29	20.02	21.58	23.28	25.13	27.15	31.77
	16	16.0	18.64	21.82	25.00	25.67	27.89	30.32	35.95
	17	18.0	20.01	25.70	23.64	30.91	34.00	37.45	40.55
	10	19.0	22.84	27.67	30.54	33.76	37.38	41.45	51.16
	20	20.0	24.30	29.78	33.06	36.79	41.00	45.76	57.28
	25	25.0	32.03	41.65	47.73	54.86	63.25	73.11	98.35
	30	30.0	40.57	56.08	66.44	79.06	94.46	113.28	164.49
	35	35.0	49.99	73.65	90.32	111.43	138.24	172.32	271.02

Step-2

Determine design lane factor (F_d)

■ The percent of traffic on the design lane is 45%,

> Thus, the design lane factor $(F_d) = 45\%$

Step-2

Determine the percentage of trucks in the ADT (T)

➢Passenger cars (1000 lb/axle) = 50%

2-axle single-unit trucks (6000 lb/axle) = 33%

➤3-axle single-unit trucks (6000 lb/axle) = 17%

Equivalent Single Axle Loads (ESALs) for category i

For 3-axle single-unit trucks (6000 lb/axle)

- $\blacksquare ESAL_{3-axle single-unit trucks} = (AADT)_0 (T) (G_{rn}) (F_d) (365) (T_f)$
- ESAL_{3-axle single-unit trucks} = (12,000)₀ (17%) (29.78) (45%) (365) (0.264) =
- ESAL_{3-axle single-unit trucks} = 2.6343 X 10⁶

Solution

Total ESAL Calculation for mixed traffic

Vahiala Catagony ELINAA Classification			ESAL	for Vehicl	e Category		
Venicle Category, FHWA Classification	AADT	Т	G _{rn}	F _d	T _f (/ vehicle)		ESAL
Passenger Cars and small trucks	12,000	50%	29.78	45%	0.004		1.17E+05
2axle, 4tire vans motorhomes, etc	12,000	33%	29.78	45%	0.02	l	3.87E+05
2-axle 6 tire single units						Ι	0.00E+00
3 axle single unit	12,000	17%	29.78	45%	0.264	Ι	2.63E+06
4 axle single unit						Ī	0.00E+00
4-or-less-axle multi unit						365	0.00E+00
5 axle multi unit						1	0.00E+00
6-or-more-axle double unit						I	0.00E+00
5-axle or less, multi-unit						Ι	0.00E+00
6-axle, multi-unit						Ι	0.00E+00
7-or-more-axle, multi-unit						I	0.00E+00
	Total ES	SAL					3.14E+06

	a .	в.	1111	شحن قائلرة باريعة معاور و مطلورة بمعورين محاور (المحاور الأمامية مزدوجة وقابلة للتوجيه)	*	
	67	e7	****	شعن قاطرة باريعة معاور و مقلورة بالالية معاور	s	
	44	*1		مىيسارة شخسان بكميسة مجساور (المعاور الأمامية مزدوجة وقابلة للتوجوه)	Х	
	٥V	۰i	1177	شحن قاطرة بغسبة محاور ومقطورة بمحورين (المحاور الأمامية مزدوجة وقابلة للتوجيه)	¥¥.	
	17	3+	1171	شحن فاطرة بخمسة محاور ومقطورة بثلاثة محاور (المحاور الأماسية مزدوجة وقابلة للترجيه)	**	
	**	**	***	راس قطرة بمعورين وتصف متطورة بممور واهد	VF	
	٤.	٤.	111	راس گانلرة بمدورين وتصف ملطورة بمدورين	11	
500	14	14	*11	راس قاطرة بمحورين ونصف مقطورة بثلاثة محورين أو شاهنة كاسلة قطعة واحدة	10	
Sto ccco	o r	1.8	1))	راس قاطىرة بمدورين ونصف منطورة باريمة محاور		
	а.	٤.	111	راس قاطرة بثلاثة محاور ونصف مظاورة يمحور واحد		
600000	P1	t V	111	راين قائلرة بثلاثة محاور ونصف مقطورة يحورين	14	128

ندىن	اورزن السبوع به بعد قرار مجنن الوزنياه تقارية تاريخ	لازن دستوع به حسب القتر	فتستيف	غنة المرعية	الرقم
AL /11:00	r 1	77		محسارة تسعمان باريمية معماور (المعاور الأمامية مزدوجة وقابة للتوجيعونات مسلقة معورية الل من "م)غلاطة - وجود نظام مكاح ABS/EBS على حسيح المدور	۲.0
NTD:	7. 5	τ.λ		موسارة شعسن باريعسة معساور (العداور الامقية مزدوجة وللبلة للتوجيعوذت مسلقة معورية اغلر من "م)غلاطة - وجود نظام مكانح ABS/EBS على جنيع المداور	**
50 50	F 3	**		سيسترة شعسن بلويعية مصاور (المعاور الأسامية مزدوجة وقابلة تلتويوبوذات مستقة محورية ألمّ من ٢م)سطحه بونش - وجود نشام حكام ABS/EBS على جميع المحاور	
0000	*^	T A		يستارة شعسن باريعية معساور المحاور الامامية مزدوجة وذايلة للتوجيعوذات ساقة معورية أكثر من "م)سطحه يونش وجود نظام مكاح ABS/EBS على جسع محار	τ.Α.
Nil	*1	77		يسارة شعسن باريعسة معساور معدور الأمامية مزدوجة وقابلة للتوجياوذات الله معورية أقل من الم)صهريج مود نظام مكارج ABS/EBS على جمع ماه	
	۳۸	**	**	ارة شحان باريعام محاور حاور الامامية مزدوجة وقايلة تلتوجيهوذات قاة محورية المار من الم)صهريج مود نظام مكام ود نظام مكام على جس	+

شتن	الوان الشموح به بعد قرار معلم الوزيره المار الوزيره	19	فللخيف	فنة البرعية	الرقم	
Cars 22223	**	*1	473	رابان عطر بدریم معاور واسف مطفررة بلمسه (المحور الأمامي مقارد) - وجود انظمة تعلق مرائية حسب الشكل لمروحج - قاراد طون نصف المظفررة عن 14م بعب أن محوي على ذكل على معروين كذلة الشرجه - وجود نظم مكارح ABS/EBS على حمع المحارر	r 5	
۲] ۲۵ ده ددددده		NA	333	رأس قلطرة باريع معاور وتصف متطورة بسنة محاور المحاور الأمامية متعلية وقليلة للتوجيه وذت - وجود انتشبة تعلق موتية مسب الشكل للبرصم - إذا راد طول نصف المطورة عن 1 م يجب ان - ويود نظر محاج ABS/EBS على جمع المحرر	**	
	**	۸.	777	رأس غاطرة باريع معاور وتصف مطفورة بستة تحذور المحذور المحذورية انقر من ٢٩) وجود انقضة تطبق موالية حص الشكل المرضح وجود انقضة تطبق موالية حص الشكل المرضح وجود نظره مكانج ABSIEBS هي جامع وجود نظر مكانج ABSIEBS هي جامع محاور	TA	
	AV	٧A	171	اس قائلرة بأربع معاور وتصف ملتلورة بستة حاور لمعور الامامي منقره) رهود أنقلته تطول هو ابية حسب الذكل الدوميح تا إن قول نصف المقاورة عن 11م يعيد أن توي على الاقل على ثلاث معاور قابله الترويه جود نقلم حكيم BS/EBS على حميم		

لاجمالية وقوة	ي والاوزان ا	المادة ١ - يسمى هذا النظام (نظام الابعاد القصو
يخ نشره في	ل به من تا	المحرك للمركبات لسنة ٢٠١٦) ويعم
		الجريدة الرسمية.
الحمولة على	في ذلك بروز	المادة ٢ ـ تكون الابعاد القصوى للمركبات بما ف
0	···· •	النحو التالي :-
	متا	أ العرض الاحمالي ٢٦٠ سنت
	1.5	ative fr North Clar NI
	سر,	ب- اوريعاع اوجمالي ۲۰۰ والسيب
		ج- الطول الاجمالي كما يلي :-
متر	سنتيمتر	فنة المركبة
۱۲	-	۱ سیارة شحن ذات محورین او اکثر
١٦	٥.	٢. رأس قاطر مع نصف مقطورة
۱۳	٦0	٣. نصف المقطورة
1.4	۳٥	٤. سيارة شحن قاطرة مع مقطورة
٨	٥.	 المقطورة
۱۲	-	٦. حافلة ذات محورين أو اكثر
1 A	_	٧. حافلة مفصلية
* *	٥.	٨ رأس قاطرة مع نصف مقطورة باربعة
		محاور او اکثر
۱۸	-	٩. نصف مقطورة باربعة محاور أو اكثر
		١٠. إذا كانت الشاحنة بتصميم تقليدي
		(المحرك امام الكابينة) يزاد على
		الطول الاحمال ما مقد أو (1) م

```
المادة ٣- تكون الاحمال المحورية على كل محور من محاور المركبة كما
                                                   يلي :-
                           يليي :-
أ - محاور قابلة للتوجيه :-
- نه، د ۷ اطنان
                  ٦ اطنان لكل محور
                                          ٢ - محاور متعاقبة
                                ب- محاور غير قابلة للتوجيه :-
                          ۱۳ طنا
                                           ۱ ـ محور منفرد
                                ٢ - محور مزدوج كما يلي :-
- اذا كانت المسافة المحورية اقل من مترين ١٠ اطنان لكل
                                                 محور
- اذا كانت المسافة المحورية لا تقل عن مترين ١٣ طنا لكل
                                               محور
                            يعامل معاملة المحور المنفرد
               ٨ اطنان لكل محور
                                    ٣ - المحور الثلاثي
               ۷ اطنان لکل محور
                                        ٤ ـ المحور الرباعي
ج -على الرغم مما ورد في الفقرة (ب) من هذه المادة تكون
              الاحمال المحورية للمقطورة على النحو التالي :-
١- محور منفرد ٩ اطنان لكل محور
                                          ۱ ـ محور منفرد
                ٥ ٧ طن لكل محور
                                         ۲ _ محور مزدوج
```

