Introduction to Probability and Statistics

Topic (1): "Describing Data with Graphs"

Dr. Heba Ayyoub

Philadelphia University

Topic (1): "Describing Data with Graphs"

1 Variables and Data

Main concepts:

1) Variable: is a characteristic that changes over time and/or varies from person to other.

Example (1): Body temperature, height, weight, sex, age, color, major, GPA.

2) Experimental unit: is the person or object on which a variable is measured.

Example (2): We need to study a GPA of 50 students.

- Variable:
- Experimental Unit:

Note: When the variable measured on a set of experimental unit a result is a set of measurement / data.

Example (3): GPA of students are 85, 67, 93, 87, ... are called data / set of measurement.

3) data: is a measurements of the sample based on variable(s).

Types of data:

- Univariate data: One variable is measured on a single experimental unit.

- Bivariate data: Two variables are measured on a single experimental unit.

- Multivariate data: More than two variables are measured on a single experimental unit.

4) Population: is the set of all measurements of interest to the investigator.

5) Sample: is a subset of measurements selected from the population of interest.

Example (4): We need to study GPA of 18 students from mathematics department at Philadelphia University.

Population:

Sample:

Variable:

Experimental Unit:

6) Parameter: Numerical description of population characteristic.

Example (5): Average age of all people in Jordan.

7) Statistic: Numerical description of sample characteristic.

Example (6): Average age of people from three cities in Jordan.

Example (7): A set of 4 students are selected from Introduction to Probability and Statistics class and the following measurement are recorded:

Student	GPA	Gender	Major
1	75	F	CS
2	80	М	Mathematics
3	85	М	Bio Technology
4	72	F	Mathematics

- **Population:**
- > Sample:
- > Experimental Unit:
- How many variables we have:
- > Data:
- > Types of data:

2 Types of Variables

Variables can be classified into one of two categories:

1) Qualitative variables:

Words or attributes.

Types of Qualitative:

Nominal Variables:

Example (8):

- Blood type (A, B, AB, O).
- Nationality (Jordanian, Palestinian, Syrian, Iraqi, Egyptian, Omani, Saudi, ...).
- Sex (Male, Female)
- State of birth (Irbid, Jerash, Amman, ...).

Ordinal Variables:

Example (9):

- Educational level (Elementary, Intermediate, ...).
- Students grade (A, B, C, D, F).
- Military rank.

2) Quantitative variables:

Numbers.

Types of Quantitative:

Discrete variable:

Can assume only a finite or countable number of values.

Example (10):

- Number of family members.
- Number of new car sales.

Continuous variable:

Can assume the infinitely many values corresponding to the points on a line interval.

Example (11): Height, weight, time, distance, and volume.

Example (13): Choose the correct answer:

- **1.** The age is an example of:
 - a) Qualitative variable

- b) Discrete Quantitative
- c) Continuous Quantitative
- d) Continuous Qualitative

- **2.** The number of family members is an example of:
 - a) Qualitative variable

b) Quantitative variable

c) a + b

d) None

Exercises (1): Experimental Units Identify the experimental units on which the following variables are measured:

a. Gender of a student.

- **Experimental Units: The student.**
- **b.** Number of errors on a midterm exam.
- **c.** Age of a cancer patient.
- **d.** Number of flowers on an azalea plant.
- **e.** Color of a car entering a parking lot.

Exercises (2): Qualitative or Quantitative? Identify each variable as quantitative or qualitative:

- a. Amount of time it takes to assemble a simple puzzle. Quantitative
- **b.** Number of students in a first-grade classroom.
- **c.** Rating of a newly elected politician (excellent, good, fair, poor).
- **d.** State in which a person lives.

Exercises (3): Discrete or Continuous? Identify the following quantitative variables as discrete or continuous:

a. Population in a particular area in Jordan.

- Discrete
- **b.** Weight of newspapers recovered for recycling on a single day.
- **c.** Time to complete a mathematics exam.

3 Graphs for Categorical Data

1) Bar chart

- Bar charts display data using rectangular bars.
- Each bar represents a category with its height showing frequency.
- Useful for comparing different categories.

- Frequency (f): Number of measurement in each category.
- Relative Frequency (r, f): Proportion of measurement in each category.

$$r.f = \frac{f}{\sum f}$$

- Percentage $(p) = r.f \times 100\%$
- Sample size (n): $n = \sum f$

$$\geq \sum r.f = 1$$

$$\geq \sum p = 100\%$$

2) Pie Chart

- A pie chart is a circular graph divided into slices.
- Each slice represents a proportion of the whole.
- Best for showing percentages and parts of a whole.

1. Draw a circle

2.
$$\theta = r. f \times 360^{\circ}$$

$$\Sigma\theta = 360^{\circ}$$

Example (14): Number of students in Genetics class 13, Mathematics class 12, and IT class 10, then the relative frequency of Genetics students is

Example (15):

Department	Mathematics	Genetics	IT
r.f	0.1	0.3	А

1) Find the r.f of the IT department (Find the value of A)?

2) Draw a bar chart?

3) Draw a pie chart?

Example (16): Given the following grades of 20 students in Philadelphia University:

A, A, B, B, B, C, C, C, A, B, C, A, B, B, C, C, A, C, B, C.

1) Construct a Frequency table.

Category	f	r.f	Cumulative f	Percentage	θ
Α					
В					
С					

2) Draw a bar chart.

3) Draw a pie chart.

Exercises (4): Fill-in the blanks for the given frequency distribution.

Category	f	r.f	Cumulative f
Α			32
В		0.27	
C			
D	21		100

4 Graphs of Quantitative Variables

- 1) Bar chart
- 2) Pie chart
- 3) Line chart
- 4) Dot plot
- 5) Stem and leaf
- 6) Histogram
- 7) Box plot

3) Line chart connect data points with a line and usually used when a Quantitative variable is recorded over time.

Example (17): Draw a line chart for the following data:

time	temperature
6	36
7	38
8	37
9	36
10	38
11	35

4) Dot plot: s a simple type of graph where each data point is represented by a dot. It's used to show how often something happens in a set of data.

Example (18): Given the following grades:

9, 8, 7, 7, 8, 9, 10, 10, 10, 10, 1, 3, 5. Draw dot-plot.

5) Stem and leaf: Each number is separated into a leaf (the right most digit) and a stem (the remaining left most digits). Used to display distribution of Quantitative variable.

Example (19): Given the following data:

3.2, 2.1, 2.2, 2.9, 5, 6.9, 4, 4.1, 4.2, 4.3, 4.2, 3.4, 3.5, 5.8, 5.7, 3.6, 4.4, 5.9, 4.9, 4.8, 4.8, 4.5, 4.6. Draw stem and leaf?

Note: Number of leaves = Number of data.

Example (20): 32 → Leaf unit =

$$3.2 \rightarrow \text{Leaf unit} =$$

$$35.2 \rightarrow \text{Leaf unit} =$$

$$3.52 \rightarrow \text{Leaf unit} =$$

Example (21):

Stem	Lea	af									
5	0	2	9								
6	2	4	5	6							
7	0	1	2	2	3	4	5	6	8	8	9
8	0	7	8	9							
9	8	9									

1) If the leaf unit is 0.1, what is the min and max values.

2) Find the *r.f* of the observations that are less than 6.3?

3) Find the *r.f* of the observations that are less than or equal 6.4?

4) Find the *r.f* of the observations that are greater than or equal 8.4?

Example (22): Given the following data:

12, 11, 2, 25, 21, 24, 23, 39, 39, 36, 38, 35, 38, 34, 29. Construct stem and leaf plot?

Shapes of Distributions

1) Symmetric

If the right and left sides of the distribution when divided at the middle value form a mirror image.

2) Skewed to the right

If a greater proportion of the measurement lie to the right of the peak value.

3) Skewed to the left

If a greater proportion of the measurement lie to the left of the peak value.

Example (23): Given the following stem and leaf plot:

Stem	Lea	Leaf					
0	2						
1	2	1					
2	5	1	4	3	9		
3	9	9	6	8	5	8	4

Describe the shape of distribution?

Example (24): Given the following dot plot, describe the shape of distribution?

Outliers

One observation or more that are not compatible with rest of observations.

Example (25):

Are there any strange or unusual measurements that stand out in the data set?

5 Relative Frequency Histograms

A relative frequency histogram for a quantitative data set is a bar char in which the height of the bar shows measurements fall in a particular class or subinterval.

Note:

The classes do not overlap.

- Stack and draw bars
- Each class has a lower-class limit, which is the least number that can belong to the class, an upper-class limit, which is the greatest number that can belong to the class.
- Class Length = Upper Limit of a Class Lower Limit of that Class.
- Class Width = distance between lower (or upper) limits of consecutive classes. For instance, the class width in the frequency distribution shown is 6 1 = 5.
- Class Length = Class Width − 1.
- Mid-Points of Class Intervals:

$$Mid-point = \frac{lower class limit + upper class limit}{2}$$

Grouping data (grouping frequency table)

How to construct a group frequency table?

Step 1: Choose the number of classes/intervals. [Usually between 5 and 10 and usually given]

Step 2: Find the range. R = max – min

Step 3: Calculate the approximate class width.

class width =
$$\left[\frac{R}{\text{# of calsses}}\right]$$

where [.] is the ceiling function. For example, [2.8] = 3, [1.5] = 2, and [6.1] = 7.

Example (26): Given the following grades for 40 students: 94, 82, 77, 75, 70, 62, 89, 57, 35, 92, 80, 85, 55, 45, 69, 75, 72, 90, 82, 62, 50, 44, 67, 53, 82, 90, 91, 57, 47, 82, 70, 82,78, 62, 49, 81, 61, 55, 70, 80.

Construct grouped Frequency tables with 5 classes.

a) Draw a histogram.

- b) Describe the shape of the distribution of the grades?
- c) Find the proportion of the student that have grades 71 or higher?

d) Find the proportion of the student that have grades less than 59?

Example (27): r.f = 0.75 and $\sum f = 40$ what is the value of f?

Exercises (5): Given the following data:

21.8, 20.3, 20.9, 21.9, 20.8, 19.9, 18.8, 18.9, 19.8, 19.9, 18.9, 18, 18.7, 18.1, 18.2, 19.4, 19.5, 19.5, 18.6.

Draw stem and leaf plot?

Exercises (6): Given the following data:

8, 8, 9, 9, 10, 10, 7, 7, 7, 8, 8, 9, 10, 10, 10, 10, 10, 10, 8, 6, 6.

- 1) Construct a Frequency table.
- 2) Draw a bar chart.
- 3) Describe the shape of the data?

Exercises (7): Given the following data:

1, 2, 1, 0, 2, 2, 1, 1, 0, 0, 2, 2, 1, 1, 0, 0, 1, 2, 1, 1. Where the leaf unit = 0.1.

- a) Construct a stem and leaf plot.
- b) Proportion of measurement less than 1?
- c) Proportion of measurement less than 2?
- d) Describe the shape of the data?

Example (28): Describe the shape of the following Car Type Histogram?

- a) Skewed to the left.
- b) Skewed to the right.
- c) Symmetric.
- d) Unknown.

Exercises (8): True or False:

- 1) A histogram is a graphical representation of the frequency distribution of a dataset.
- 2) In a bar chart, the height of each bar represents the frequency or relative frequency of a category.
- 3) A line chart is best suited for displaying categorical data.
- 4) The shape of a distribution can be described as symmetric, skewed left, or skewed right.
- 5) The area of each section in a pie chart corresponds to its proportion in the dataset.